ASSESSMENT OF MORTGAGE DEFAULT RISK VIA BAYESIAN STATE SPACE MODELS

Managing risk at the aggregate level is crucial for banks and financial institutions as required by the Basel III framework. In this paper, we introduce discrete time Bayesian state space models with Poisson measurements to model aggregate mortgage default rate. We discuss parameter updating, filter...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The annals of applied statistics 2013-09, Vol.7 (3), p.1450-1473
Hauptverfasser: Aktekin, Tevfik, Soyer, Refik, Xu, Feng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Managing risk at the aggregate level is crucial for banks and financial institutions as required by the Basel III framework. In this paper, we introduce discrete time Bayesian state space models with Poisson measurements to model aggregate mortgage default rate. We discuss parameter updating, filtering, smoothing, forecasting and estimation using Markov chain Monte Carlo methods. In addition, we investigate the dynamic behavior of the default rate and the effects of macroeconomic variables. We illustrate the use of the proposed models using actual U.S. residential mortgage data and discuss insights gained from Bayesian analysis.
ISSN:1932-6157
1941-7330
DOI:10.1214/13-AOAS632