BAYESIAN ANOMALY DETECTION METHODS FOR SOCIAL NETWORKS

Learning the network structure of a large graph is computationally demanding, and dynamically monitoring the network over time for any changes in structure threatens to be more challenging still. This paper presents a two-stage method for anomaly detection in dynamic graphs: the first stage uses sim...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The annals of applied statistics 2010-06, Vol.4 (2), p.645-662
Hauptverfasser: Heard, Nicholas A., Weston, David J., Platanioti, Kiriaki, Hand, David J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Learning the network structure of a large graph is computationally demanding, and dynamically monitoring the network over time for any changes in structure threatens to be more challenging still. This paper presents a two-stage method for anomaly detection in dynamic graphs: the first stage uses simple, conjugate Bayesian models for discrete time counting processes to track the pairwise links of all nodes in the graph to assess normality of behavior; the second stage applies standard network inference tools on a greatly reduced subset of potentially anomalous nodes. The utility of the method is demonstrated on simulated and real data sets.
ISSN:1932-6157
1941-7330
DOI:10.1214/10-aoas329