RARE EVENT SIMULATION FOR PROCESSES GENERATED VIA STOCHASTIC FIXED POINT EQUATIONS

In a number of applications, particularly in financial and actuarial mathematics, it is of interest to characterize the tail distribution of a random variable V satisfying the distributional equation V D̳ f(V), where f(ν) = A max{ν, D} + B for (A, B, D) € (0, ∞) × ℝ². This paper is concerned with co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Annals of applied probability 2014-10, Vol.24 (5), p.2143-2175
Hauptverfasser: Collamore, Jeffrey F., Diao, Guoqing, Vidyashankar, Anand N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In a number of applications, particularly in financial and actuarial mathematics, it is of interest to characterize the tail distribution of a random variable V satisfying the distributional equation V D̳ f(V), where f(ν) = A max{ν, D} + B for (A, B, D) € (0, ∞) × ℝ². This paper is concerned with computational methods for evaluating these tail probabilities. We introduce a novel importance sampling algorithm, involving an exponential shift over a random time interval, for estimating these rare event probabilities. We prove that the proposed estimator is: (i) consistent, (ii) strongly efficient and (iii) optimal within a wide class of dynamic importance sampling estimators. Moreover, using extensions of ideas from nonlinear renewal theory, we provide a precise description of the running time of the algorithm. To establish these results, we develop new techniques concerning the convergence of moments of stopped perpetuity sequences, and the first entrance and last exit times of associated Markov chains on ℝ. We illustrate our methods with a variety of numerical examples which demonstrate the ease and scope of the implementation.
ISSN:1050-5164
2168-8737
DOI:10.1214/13-AAP974