UNIVERSALITY OF COVARIANCE MATRICES

In this paper we prove the universality of covariance matrices of the form HN × N = X†X where X is an M × N rectangular matrix with independent real valued entries xij satisfying Exij = 0 and $Ex_{ij}^2 = \frac{1}{M}, N, M \to \ infty $. Furthermore it is assumed that these entries have sub-exponent...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Annals of applied probability 2014-06, Vol.24 (3), p.935-1001
Hauptverfasser: Pillai, Natesh S., Yin, Jun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper we prove the universality of covariance matrices of the form HN × N = X†X where X is an M × N rectangular matrix with independent real valued entries xij satisfying Exij = 0 and $Ex_{ij}^2 = \frac{1}{M}, N, M \to \ infty $. Furthermore it is assumed that these entries have sub-exponential tails or sufficiently high number of moments. We will study the asymptotics in the regime N/M = dN ϵ (0, ∞), limN→∞ dN ≠ 0, ∞. Our main result is the edge universality of the sample covariance matrix at both edges of the spectrum. In the case limN→∞ dN = 1, we on ty focus on the largest eigenvalue. Our proof is based on a novel version of the Green function comparison theorem for data matrices with dependent entries. En route to proving edge universality, we establish that the Stieltjes transform of the empirical eigenvalue distribution of H is given by the Marcenko-Pastur law uniformly up to the edges of the spectrum with an error of order (Nη)⁻¹ where η is the imaginary part of the spectral parameter in the Stieltjes transform. Combining these results with existing techniques we also show bulk universality of covariance matrices. All our results hold for both real and complex valued entries.
ISSN:1050-5164
2168-8737
DOI:10.1214/13-AAP939