TRACKING A RANDOM WALK FIRST-PASSAGE TIME THROUGH NOISY OBSERVATIONS

Given a Gaussian random walk (or a Wiener process), possibly with drift, observed through noise, we consider the problem of estimating its first-passage time τ l of a given level l with a stopping time η defined over the noisy observation process. Main results are upper and lower bounds on the minim...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Annals of applied probability 2012-10, Vol.22 (5), p.1860-1879
Hauptverfasser: Burnashev, Marat V., Tchamkerten, Aslan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1879
container_issue 5
container_start_page 1860
container_title The Annals of applied probability
container_volume 22
creator Burnashev, Marat V.
Tchamkerten, Aslan
description Given a Gaussian random walk (or a Wiener process), possibly with drift, observed through noise, we consider the problem of estimating its first-passage time τ l of a given level l with a stopping time η defined over the noisy observation process. Main results are upper and lower bounds on the minimum mean absolute deviation infη E|η —τ l which become tight as l →∞. Interestingly, in this regime the estimation error does not get smaller if we allow η to be an arbitrary function of the entire observation process, not necessarily a stopping time. In the particular case where there is no drift, we show that it is impossible to track τ l : infη Elη — τ l | p = ∞ for any l > 0 and p ≥ 1/2.
doi_str_mv 10.1214/11-AAP815
format Article
fullrecord <record><control><sourceid>jstor_proje</sourceid><recordid>TN_cdi_projecteuclid_primary_oai_CULeuclid_euclid_aoap_1350067988</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>41713400</jstor_id><sourcerecordid>41713400</sourcerecordid><originalsourceid>FETCH-LOGICAL-c332t-eb7f353ab65caa39fa62a6f2e8c47423cf05e659195b4df5416f13c967b608773</originalsourceid><addsrcrecordid>eNo9kE1Pg0AQhjdGE2v14A8wIfHkAd1hv9jjSltKSqEBqvFEli0kJSoV6MF_L4aml3mTyZNnJi9C94CfwQH6AmArtXGBXaCJA9y1XUHEJZoAZthmwOk1uum6GmMsqRQTNMsS5a2CyLeUlahoFq-tdxWurEWQpJm9UWmq_LmVBethLJN46y-tKA7SDyt-TefJm8qCOEpv0VWlP7vy7pRTtF3MM29ph7EfeCq0DSFOb5eFqAgjuuDMaE1kpbmjeeWUrqGCOsRUmJWcSZCsoLuKUeAVECO5KDh2hSBTpEbvoW3q0vTl0Xzud_mh3X_p9jdv9D73tuFpewrd6EMOhGHMhXTdwfF4dvwcy67P6-bYfg9v5wDgUCyklAP1NFKmbbquLavzEcD5f9EDnI9FD-zDyNZd37RnkIIAQjEmf7uwcpY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1112407999</pqid></control><display><type>article</type><title>TRACKING A RANDOM WALK FIRST-PASSAGE TIME THROUGH NOISY OBSERVATIONS</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>JSTOR Mathematics &amp; Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><source>Project Euclid Complete</source><creator>Burnashev, Marat V. ; Tchamkerten, Aslan</creator><creatorcontrib>Burnashev, Marat V. ; Tchamkerten, Aslan</creatorcontrib><description>Given a Gaussian random walk (or a Wiener process), possibly with drift, observed through noise, we consider the problem of estimating its first-passage time τ l of a given level l with a stopping time η defined over the noisy observation process. Main results are upper and lower bounds on the minimum mean absolute deviation infη E|η —τ l which become tight as l →∞. Interestingly, in this regime the estimation error does not get smaller if we allow η to be an arbitrary function of the entire observation process, not necessarily a stopping time. In the particular case where there is no drift, we show that it is impossible to track τ l : infη Elη — τ l | p = ∞ for any l &gt; 0 and p ≥ 1/2.</description><identifier>ISSN: 1050-5164</identifier><identifier>EISSN: 2168-8737</identifier><identifier>DOI: 10.1214/11-AAP815</identifier><language>eng</language><publisher>Hayward: Institute of Mathematical Statistics</publisher><subject>60G40 ; 62L10 ; Errors ; Estimating techniques ; Estimators ; Integers ; Mathematical constants ; Mathematical functions ; Mean absolute deviation ; Normal distribution ; Optimal stopping ; quickest decision ; Random variables ; Random walk ; Random walk theory ; sequential analysis ; Statistics ; Stopping distances</subject><ispartof>The Annals of applied probability, 2012-10, Vol.22 (5), p.1860-1879</ispartof><rights>Copyright © 2012 Institute of Mathematical Statistics</rights><rights>Copyright Institute of Mathematical Statistics Oct 2012</rights><rights>Copyright 2012 Institute of Mathematical Statistics</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c332t-eb7f353ab65caa39fa62a6f2e8c47423cf05e659195b4df5416f13c967b608773</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/41713400$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/41713400$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,780,784,803,832,885,926,27924,27925,58017,58021,58250,58254</link.rule.ids></links><search><creatorcontrib>Burnashev, Marat V.</creatorcontrib><creatorcontrib>Tchamkerten, Aslan</creatorcontrib><title>TRACKING A RANDOM WALK FIRST-PASSAGE TIME THROUGH NOISY OBSERVATIONS</title><title>The Annals of applied probability</title><description>Given a Gaussian random walk (or a Wiener process), possibly with drift, observed through noise, we consider the problem of estimating its first-passage time τ l of a given level l with a stopping time η defined over the noisy observation process. Main results are upper and lower bounds on the minimum mean absolute deviation infη E|η —τ l which become tight as l →∞. Interestingly, in this regime the estimation error does not get smaller if we allow η to be an arbitrary function of the entire observation process, not necessarily a stopping time. In the particular case where there is no drift, we show that it is impossible to track τ l : infη Elη — τ l | p = ∞ for any l &gt; 0 and p ≥ 1/2.</description><subject>60G40</subject><subject>62L10</subject><subject>Errors</subject><subject>Estimating techniques</subject><subject>Estimators</subject><subject>Integers</subject><subject>Mathematical constants</subject><subject>Mathematical functions</subject><subject>Mean absolute deviation</subject><subject>Normal distribution</subject><subject>Optimal stopping</subject><subject>quickest decision</subject><subject>Random variables</subject><subject>Random walk</subject><subject>Random walk theory</subject><subject>sequential analysis</subject><subject>Statistics</subject><subject>Stopping distances</subject><issn>1050-5164</issn><issn>2168-8737</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNo9kE1Pg0AQhjdGE2v14A8wIfHkAd1hv9jjSltKSqEBqvFEli0kJSoV6MF_L4aml3mTyZNnJi9C94CfwQH6AmArtXGBXaCJA9y1XUHEJZoAZthmwOk1uum6GmMsqRQTNMsS5a2CyLeUlahoFq-tdxWurEWQpJm9UWmq_LmVBethLJN46y-tKA7SDyt-TefJm8qCOEpv0VWlP7vy7pRTtF3MM29ph7EfeCq0DSFOb5eFqAgjuuDMaE1kpbmjeeWUrqGCOsRUmJWcSZCsoLuKUeAVECO5KDh2hSBTpEbvoW3q0vTl0Xzud_mh3X_p9jdv9D73tuFpewrd6EMOhGHMhXTdwfF4dvwcy67P6-bYfg9v5wDgUCyklAP1NFKmbbquLavzEcD5f9EDnI9FD-zDyNZd37RnkIIAQjEmf7uwcpY</recordid><startdate>20121001</startdate><enddate>20121001</enddate><creator>Burnashev, Marat V.</creator><creator>Tchamkerten, Aslan</creator><general>Institute of Mathematical Statistics</general><general>The Institute of Mathematical Statistics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>20121001</creationdate><title>TRACKING A RANDOM WALK FIRST-PASSAGE TIME THROUGH NOISY OBSERVATIONS</title><author>Burnashev, Marat V. ; Tchamkerten, Aslan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c332t-eb7f353ab65caa39fa62a6f2e8c47423cf05e659195b4df5416f13c967b608773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>60G40</topic><topic>62L10</topic><topic>Errors</topic><topic>Estimating techniques</topic><topic>Estimators</topic><topic>Integers</topic><topic>Mathematical constants</topic><topic>Mathematical functions</topic><topic>Mean absolute deviation</topic><topic>Normal distribution</topic><topic>Optimal stopping</topic><topic>quickest decision</topic><topic>Random variables</topic><topic>Random walk</topic><topic>Random walk theory</topic><topic>sequential analysis</topic><topic>Statistics</topic><topic>Stopping distances</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Burnashev, Marat V.</creatorcontrib><creatorcontrib>Tchamkerten, Aslan</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>The Annals of applied probability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Burnashev, Marat V.</au><au>Tchamkerten, Aslan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>TRACKING A RANDOM WALK FIRST-PASSAGE TIME THROUGH NOISY OBSERVATIONS</atitle><jtitle>The Annals of applied probability</jtitle><date>2012-10-01</date><risdate>2012</risdate><volume>22</volume><issue>5</issue><spage>1860</spage><epage>1879</epage><pages>1860-1879</pages><issn>1050-5164</issn><eissn>2168-8737</eissn><abstract>Given a Gaussian random walk (or a Wiener process), possibly with drift, observed through noise, we consider the problem of estimating its first-passage time τ l of a given level l with a stopping time η defined over the noisy observation process. Main results are upper and lower bounds on the minimum mean absolute deviation infη E|η —τ l which become tight as l →∞. Interestingly, in this regime the estimation error does not get smaller if we allow η to be an arbitrary function of the entire observation process, not necessarily a stopping time. In the particular case where there is no drift, we show that it is impossible to track τ l : infη Elη — τ l | p = ∞ for any l &gt; 0 and p ≥ 1/2.</abstract><cop>Hayward</cop><pub>Institute of Mathematical Statistics</pub><doi>10.1214/11-AAP815</doi><tpages>20</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1050-5164
ispartof The Annals of applied probability, 2012-10, Vol.22 (5), p.1860-1879
issn 1050-5164
2168-8737
language eng
recordid cdi_projecteuclid_primary_oai_CULeuclid_euclid_aoap_1350067988
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing; Project Euclid Complete
subjects 60G40
62L10
Errors
Estimating techniques
Estimators
Integers
Mathematical constants
Mathematical functions
Mean absolute deviation
Normal distribution
Optimal stopping
quickest decision
Random variables
Random walk
Random walk theory
sequential analysis
Statistics
Stopping distances
title TRACKING A RANDOM WALK FIRST-PASSAGE TIME THROUGH NOISY OBSERVATIONS
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T16%3A05%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proje&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=TRACKING%20A%20RANDOM%20WALK%20FIRST-PASSAGE%20TIME%20THROUGH%20NOISY%20OBSERVATIONS&rft.jtitle=The%20Annals%20of%20applied%20probability&rft.au=Burnashev,%20Marat%20V.&rft.date=2012-10-01&rft.volume=22&rft.issue=5&rft.spage=1860&rft.epage=1879&rft.pages=1860-1879&rft.issn=1050-5164&rft.eissn=2168-8737&rft_id=info:doi/10.1214/11-AAP815&rft_dat=%3Cjstor_proje%3E41713400%3C/jstor_proje%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1112407999&rft_id=info:pmid/&rft_jstor_id=41713400&rfr_iscdi=true