TRACKING A RANDOM WALK FIRST-PASSAGE TIME THROUGH NOISY OBSERVATIONS

Given a Gaussian random walk (or a Wiener process), possibly with drift, observed through noise, we consider the problem of estimating its first-passage time τ l of a given level l with a stopping time η defined over the noisy observation process. Main results are upper and lower bounds on the minim...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Annals of applied probability 2012-10, Vol.22 (5), p.1860-1879
Hauptverfasser: Burnashev, Marat V., Tchamkerten, Aslan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Given a Gaussian random walk (or a Wiener process), possibly with drift, observed through noise, we consider the problem of estimating its first-passage time τ l of a given level l with a stopping time η defined over the noisy observation process. Main results are upper and lower bounds on the minimum mean absolute deviation infη E|η —τ l which become tight as l →∞. Interestingly, in this regime the estimation error does not get smaller if we allow η to be an arbitrary function of the entire observation process, not necessarily a stopping time. In the particular case where there is no drift, we show that it is impossible to track τ l : infη Elη — τ l | p = ∞ for any l > 0 and p ≥ 1/2.
ISSN:1050-5164
2168-8737
DOI:10.1214/11-AAP815