TOTAL VARIATION BOUND FOR KAC'S RANDOM WALK

We show that the classical Kac's random walk on (n − 1)-sphere S n−1 starting from the point mass at e₁ mixes in O(n⁵(log n)³) steps in total variation distance. The main argument uses a truncation of the running density after a burn-in period, followed by L² convergence using the spectral gap...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Annals of applied probability 2012-08, Vol.22 (4), p.1712-1727
1. Verfasser: Jiang, Yunjiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We show that the classical Kac's random walk on (n − 1)-sphere S n−1 starting from the point mass at e₁ mixes in O(n⁵(log n)³) steps in total variation distance. The main argument uses a truncation of the running density after a burn-in period, followed by L² convergence using the spectral gap information derived by other authors. This improves upon a previous bound by Diaconis and Saloff-Coste of order O(n² n ).
ISSN:1050-5164
2168-8737
DOI:10.1214/11-AAP810