TOTAL VARIATION BOUND FOR KAC'S RANDOM WALK
We show that the classical Kac's random walk on (n − 1)-sphere S n−1 starting from the point mass at e₁ mixes in O(n⁵(log n)³) steps in total variation distance. The main argument uses a truncation of the running density after a burn-in period, followed by L² convergence using the spectral gap...
Gespeichert in:
Veröffentlicht in: | The Annals of applied probability 2012-08, Vol.22 (4), p.1712-1727 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We show that the classical Kac's random walk on (n − 1)-sphere S n−1 starting from the point mass at e₁ mixes in O(n⁵(log n)³) steps in total variation distance. The main argument uses a truncation of the running density after a burn-in period, followed by L² convergence using the spectral gap information derived by other authors. This improves upon a previous bound by Diaconis and Saloff-Coste of order O(n² n ). |
---|---|
ISSN: | 1050-5164 2168-8737 |
DOI: | 10.1214/11-AAP810 |