ISING MODELS ON LOCALLY TREE-LIKE GRAPHS

We consider ferromagnetic Ising models on graphs that converge locally to trees. Examples include random regular graphs with bounded degree and uniformly random graphs with bounded average degree. We prove that the "cavity" prediction for the limiting free energy per spin is correct for an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Annals of applied probability 2010-04, Vol.20 (2), p.565-592
Hauptverfasser: Dembo, Amir, Montanari, Andrea
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider ferromagnetic Ising models on graphs that converge locally to trees. Examples include random regular graphs with bounded degree and uniformly random graphs with bounded average degree. We prove that the "cavity" prediction for the limiting free energy per spin is correct for any positive temperature and external field. Further, local marginals can be approximated by iterating a set of mean field (cavity) equations. Both results are achieved by proving the local convergence of the Boltzmann distribution on the original graph to the Boltzmann distribution on the appropriate infinite random tree.
ISSN:1050-5164
2168-8737
DOI:10.1214/09-AAP627