On the Properties of a Tree-Structured Server Process
Let X0be a nonnegative integer-valued random variable and let an independent copy of X0be assigned to each leaf of a binary tree of depth k. If X0and X'0are adjacent leaves, let X1= (X0- 1)++ (X'0- 1)+be assigned to the parent node. In general, if Xjand X'jare assigned to adjacent nod...
Gespeichert in:
Veröffentlicht in: | The Annals of applied probability 1991-02, Vol.1 (1), p.118-125 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let X0be a nonnegative integer-valued random variable and let an independent copy of X0be assigned to each leaf of a binary tree of depth k. If X0and X'0are adjacent leaves, let X1= (X0- 1)++ (X'0- 1)+be assigned to the parent node. In general, if Xjand X'jare assigned to adjacent nodes at level j = 0, ⋯, k - 1, then Xjand X'jare, in turn, independent and the value assigned to their parent node is then Xj+1= (Xj- 1)++ (X'j- 1)+. We ask what is the behavior of Xkas k → ∞. We give sufficient conditions for Xk→ ∞ and for Xk→ 0 and ask whether these are the only nontrivial possibilities. The problem is of interest because it asks for the asymptotics of a nonlinear transform which has an expansive term (the + in the sense of addition) and a contractive term (the + in the sense of positive part). |
---|---|
ISSN: | 1050-5164 2168-8737 |
DOI: | 10.1214/aoap/1177005984 |