Cramér's Estimate for a Reflected Lévy Process

The natural analogue for a Lévy process of Cramér's estimate for a reflected random walk is a statement about the exponential rate of decay of the tail of the characteristic measure of the height of an excursion above the minimum. We establish this estimate for any Lévy process with finite nega...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Annals of applied probability 2005-05, Vol.15 (2), p.1445-1450
Hauptverfasser: Doney, R. A., Maller, R. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The natural analogue for a Lévy process of Cramér's estimate for a reflected random walk is a statement about the exponential rate of decay of the tail of the characteristic measure of the height of an excursion above the minimum. We establish this estimate for any Lévy process with finite negative mean which satisfies Cramér's condition, and give an explicit formula for the limiting constant. Just as in the random walk case, this leads to a Poisson limit theorem for the number of "high excursions."
ISSN:1050-5164
2168-8737
DOI:10.1214/105051605000000016