Upper Bounds for Spatial Point Process Approximations
We consider the behavior of spatial point processes when subjected to a class of linear transformations indexed by a variable T. It was shown in Ellis [Adv. in Appl. Probab. 18 (1986) 646-659] that, under mild assumptions, the transformed processes behave approximately like Poisson processes for lar...
Gespeichert in:
Veröffentlicht in: | The Annals of applied probability 2005-02, Vol.15 (1B), p.615-651 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 651 |
---|---|
container_issue | 1B |
container_start_page | 615 |
container_title | The Annals of applied probability |
container_volume | 15 |
creator | Schuhmacher, Dominic |
description | We consider the behavior of spatial point processes when subjected to a class of linear transformations indexed by a variable T. It was shown in Ellis [Adv. in Appl. Probab. 18 (1986) 646-659] that, under mild assumptions, the transformed processes behave approximately like Poisson processes for large T. In this article, under very similar assumptions, explicit upper bounds are given for the $d_{2}$-distance between the corresponding point process distributions. A number of related results, and applications to kernel density estimation and long range dependence testing are also presented. The main results are proved by applying a generalized Stein-Chen method to discretized versions of the point processes. |
doi_str_mv | 10.1214/105051604000000684 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proje</sourceid><recordid>TN_cdi_projecteuclid_primary_oai_CULeuclid_euclid_aoap_1107271662</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>30038329</jstor_id><sourcerecordid>30038329</sourcerecordid><originalsourceid>FETCH-LOGICAL-c371t-c32f0f9f1817d5c263fa4ec13691360812a764c4131d0ddb7cc299d0f52a119c3</originalsourceid><addsrcrecordid>eNplUNtKAzEQDaJgrf6AIOwPrM4k2WTzWItWYcGC9nmJucCW2oRkC_r3prb0xYGZAzPnnBmGkFuEe6TIHxAaaFAAh78QLT8jE4qirVvJ5DmZ7Al1YfBLcpXzunAUV3JCmlWMLlWPYbe1ufIhVe9Rj4PeVMswbMdqmYJxOVezGFP4Hr7KLGzzNbnwepPdzRGnZPX89DF_qbu3xet81tWGSRxLpR688tiitI2hgnnNnUEmVElokWopuOHI0IK1n9IYqpQF31CNqAybktnBtyxfOzO6ndkMto-pHJJ--qCHfr7qjt0j6KBjjwiSShSCFg968DAp5JycP8kR-v3z-v_PK6K7g2idx5BOCgbAWkYV-wUd_2rF</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Upper Bounds for Spatial Point Process Approximations</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>JSTOR Mathematics & Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><source>Project Euclid Complete</source><creator>Schuhmacher, Dominic</creator><creatorcontrib>Schuhmacher, Dominic</creatorcontrib><description>We consider the behavior of spatial point processes when subjected to a class of linear transformations indexed by a variable T. It was shown in Ellis [Adv. in Appl. Probab. 18 (1986) 646-659] that, under mild assumptions, the transformed processes behave approximately like Poisson processes for large T. In this article, under very similar assumptions, explicit upper bounds are given for the $d_{2}$-distance between the corresponding point process distributions. A number of related results, and applications to kernel density estimation and long range dependence testing are also presented. The main results are proved by applying a generalized Stein-Chen method to discretized versions of the point processes.</description><identifier>ISSN: 1050-5164</identifier><identifier>EISSN: 2168-8737</identifier><identifier>DOI: 10.1214/105051604000000684</identifier><language>eng</language><publisher>Institute of Mathematical Statistics</publisher><subject>60G55 ; 62E20 ; 62G07 ; Approximation ; Coordinate systems ; Density ; Density estimation ; dt₂-distance ; Perceptron convergence procedure ; Point estimators ; Point processes ; Poisson process ; Poisson process approximation ; Random variables ; Stein’s method ; Test ranges ; Topology ; total variation distance</subject><ispartof>The Annals of applied probability, 2005-02, Vol.15 (1B), p.615-651</ispartof><rights>Copyright 2005 Institute of Mathematical Statistics</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c371t-c32f0f9f1817d5c263fa4ec13691360812a764c4131d0ddb7cc299d0f52a119c3</citedby><cites>FETCH-LOGICAL-c371t-c32f0f9f1817d5c263fa4ec13691360812a764c4131d0ddb7cc299d0f52a119c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/30038329$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/30038329$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,780,784,803,832,885,926,27924,27925,58017,58021,58250,58254</link.rule.ids></links><search><creatorcontrib>Schuhmacher, Dominic</creatorcontrib><title>Upper Bounds for Spatial Point Process Approximations</title><title>The Annals of applied probability</title><description>We consider the behavior of spatial point processes when subjected to a class of linear transformations indexed by a variable T. It was shown in Ellis [Adv. in Appl. Probab. 18 (1986) 646-659] that, under mild assumptions, the transformed processes behave approximately like Poisson processes for large T. In this article, under very similar assumptions, explicit upper bounds are given for the $d_{2}$-distance between the corresponding point process distributions. A number of related results, and applications to kernel density estimation and long range dependence testing are also presented. The main results are proved by applying a generalized Stein-Chen method to discretized versions of the point processes.</description><subject>60G55</subject><subject>62E20</subject><subject>62G07</subject><subject>Approximation</subject><subject>Coordinate systems</subject><subject>Density</subject><subject>Density estimation</subject><subject>dt₂-distance</subject><subject>Perceptron convergence procedure</subject><subject>Point estimators</subject><subject>Point processes</subject><subject>Poisson process</subject><subject>Poisson process approximation</subject><subject>Random variables</subject><subject>Stein’s method</subject><subject>Test ranges</subject><subject>Topology</subject><subject>total variation distance</subject><issn>1050-5164</issn><issn>2168-8737</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNplUNtKAzEQDaJgrf6AIOwPrM4k2WTzWItWYcGC9nmJucCW2oRkC_r3prb0xYGZAzPnnBmGkFuEe6TIHxAaaFAAh78QLT8jE4qirVvJ5DmZ7Al1YfBLcpXzunAUV3JCmlWMLlWPYbe1ufIhVe9Rj4PeVMswbMdqmYJxOVezGFP4Hr7KLGzzNbnwepPdzRGnZPX89DF_qbu3xet81tWGSRxLpR688tiitI2hgnnNnUEmVElokWopuOHI0IK1n9IYqpQF31CNqAybktnBtyxfOzO6ndkMto-pHJJ--qCHfr7qjt0j6KBjjwiSShSCFg968DAp5JycP8kR-v3z-v_PK6K7g2idx5BOCgbAWkYV-wUd_2rF</recordid><startdate>20050201</startdate><enddate>20050201</enddate><creator>Schuhmacher, Dominic</creator><general>Institute of Mathematical Statistics</general><general>The Institute of Mathematical Statistics</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20050201</creationdate><title>Upper Bounds for Spatial Point Process Approximations</title><author>Schuhmacher, Dominic</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c371t-c32f0f9f1817d5c263fa4ec13691360812a764c4131d0ddb7cc299d0f52a119c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>60G55</topic><topic>62E20</topic><topic>62G07</topic><topic>Approximation</topic><topic>Coordinate systems</topic><topic>Density</topic><topic>Density estimation</topic><topic>dt₂-distance</topic><topic>Perceptron convergence procedure</topic><topic>Point estimators</topic><topic>Point processes</topic><topic>Poisson process</topic><topic>Poisson process approximation</topic><topic>Random variables</topic><topic>Stein’s method</topic><topic>Test ranges</topic><topic>Topology</topic><topic>total variation distance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schuhmacher, Dominic</creatorcontrib><collection>CrossRef</collection><jtitle>The Annals of applied probability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schuhmacher, Dominic</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Upper Bounds for Spatial Point Process Approximations</atitle><jtitle>The Annals of applied probability</jtitle><date>2005-02-01</date><risdate>2005</risdate><volume>15</volume><issue>1B</issue><spage>615</spage><epage>651</epage><pages>615-651</pages><issn>1050-5164</issn><eissn>2168-8737</eissn><abstract>We consider the behavior of spatial point processes when subjected to a class of linear transformations indexed by a variable T. It was shown in Ellis [Adv. in Appl. Probab. 18 (1986) 646-659] that, under mild assumptions, the transformed processes behave approximately like Poisson processes for large T. In this article, under very similar assumptions, explicit upper bounds are given for the $d_{2}$-distance between the corresponding point process distributions. A number of related results, and applications to kernel density estimation and long range dependence testing are also presented. The main results are proved by applying a generalized Stein-Chen method to discretized versions of the point processes.</abstract><pub>Institute of Mathematical Statistics</pub><doi>10.1214/105051604000000684</doi><tpages>37</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1050-5164 |
ispartof | The Annals of applied probability, 2005-02, Vol.15 (1B), p.615-651 |
issn | 1050-5164 2168-8737 |
language | eng |
recordid | cdi_projecteuclid_primary_oai_CULeuclid_euclid_aoap_1107271662 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing; Project Euclid Complete |
subjects | 60G55 62E20 62G07 Approximation Coordinate systems Density Density estimation dt₂-distance Perceptron convergence procedure Point estimators Point processes Poisson process Poisson process approximation Random variables Stein’s method Test ranges Topology total variation distance |
title | Upper Bounds for Spatial Point Process Approximations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T05%3A56%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proje&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Upper%20Bounds%20for%20Spatial%20Point%20Process%20Approximations&rft.jtitle=The%20Annals%20of%20applied%20probability&rft.au=Schuhmacher,%20Dominic&rft.date=2005-02-01&rft.volume=15&rft.issue=1B&rft.spage=615&rft.epage=651&rft.pages=615-651&rft.issn=1050-5164&rft.eissn=2168-8737&rft_id=info:doi/10.1214/105051604000000684&rft_dat=%3Cjstor_proje%3E30038329%3C/jstor_proje%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=30038329&rfr_iscdi=true |