Upper Bounds for Spatial Point Process Approximations

We consider the behavior of spatial point processes when subjected to a class of linear transformations indexed by a variable T. It was shown in Ellis [Adv. in Appl. Probab. 18 (1986) 646-659] that, under mild assumptions, the transformed processes behave approximately like Poisson processes for lar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Annals of applied probability 2005-02, Vol.15 (1B), p.615-651
1. Verfasser: Schuhmacher, Dominic
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 651
container_issue 1B
container_start_page 615
container_title The Annals of applied probability
container_volume 15
creator Schuhmacher, Dominic
description We consider the behavior of spatial point processes when subjected to a class of linear transformations indexed by a variable T. It was shown in Ellis [Adv. in Appl. Probab. 18 (1986) 646-659] that, under mild assumptions, the transformed processes behave approximately like Poisson processes for large T. In this article, under very similar assumptions, explicit upper bounds are given for the $d_{2}$-distance between the corresponding point process distributions. A number of related results, and applications to kernel density estimation and long range dependence testing are also presented. The main results are proved by applying a generalized Stein-Chen method to discretized versions of the point processes.
doi_str_mv 10.1214/105051604000000684
format Article
fullrecord <record><control><sourceid>jstor_proje</sourceid><recordid>TN_cdi_projecteuclid_primary_oai_CULeuclid_euclid_aoap_1107271662</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>30038329</jstor_id><sourcerecordid>30038329</sourcerecordid><originalsourceid>FETCH-LOGICAL-c371t-c32f0f9f1817d5c263fa4ec13691360812a764c4131d0ddb7cc299d0f52a119c3</originalsourceid><addsrcrecordid>eNplUNtKAzEQDaJgrf6AIOwPrM4k2WTzWItWYcGC9nmJucCW2oRkC_r3prb0xYGZAzPnnBmGkFuEe6TIHxAaaFAAh78QLT8jE4qirVvJ5DmZ7Al1YfBLcpXzunAUV3JCmlWMLlWPYbe1ufIhVe9Rj4PeVMswbMdqmYJxOVezGFP4Hr7KLGzzNbnwepPdzRGnZPX89DF_qbu3xet81tWGSRxLpR688tiitI2hgnnNnUEmVElokWopuOHI0IK1n9IYqpQF31CNqAybktnBtyxfOzO6ndkMto-pHJJ--qCHfr7qjt0j6KBjjwiSShSCFg968DAp5JycP8kR-v3z-v_PK6K7g2idx5BOCgbAWkYV-wUd_2rF</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Upper Bounds for Spatial Point Process Approximations</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>JSTOR Mathematics &amp; Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><source>Project Euclid Complete</source><creator>Schuhmacher, Dominic</creator><creatorcontrib>Schuhmacher, Dominic</creatorcontrib><description>We consider the behavior of spatial point processes when subjected to a class of linear transformations indexed by a variable T. It was shown in Ellis [Adv. in Appl. Probab. 18 (1986) 646-659] that, under mild assumptions, the transformed processes behave approximately like Poisson processes for large T. In this article, under very similar assumptions, explicit upper bounds are given for the $d_{2}$-distance between the corresponding point process distributions. A number of related results, and applications to kernel density estimation and long range dependence testing are also presented. The main results are proved by applying a generalized Stein-Chen method to discretized versions of the point processes.</description><identifier>ISSN: 1050-5164</identifier><identifier>EISSN: 2168-8737</identifier><identifier>DOI: 10.1214/105051604000000684</identifier><language>eng</language><publisher>Institute of Mathematical Statistics</publisher><subject>60G55 ; 62E20 ; 62G07 ; Approximation ; Coordinate systems ; Density ; Density estimation ; dt₂-distance ; Perceptron convergence procedure ; Point estimators ; Point processes ; Poisson process ; Poisson process approximation ; Random variables ; Stein’s method ; Test ranges ; Topology ; total variation distance</subject><ispartof>The Annals of applied probability, 2005-02, Vol.15 (1B), p.615-651</ispartof><rights>Copyright 2005 Institute of Mathematical Statistics</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c371t-c32f0f9f1817d5c263fa4ec13691360812a764c4131d0ddb7cc299d0f52a119c3</citedby><cites>FETCH-LOGICAL-c371t-c32f0f9f1817d5c263fa4ec13691360812a764c4131d0ddb7cc299d0f52a119c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/30038329$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/30038329$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,780,784,803,832,885,926,27924,27925,58017,58021,58250,58254</link.rule.ids></links><search><creatorcontrib>Schuhmacher, Dominic</creatorcontrib><title>Upper Bounds for Spatial Point Process Approximations</title><title>The Annals of applied probability</title><description>We consider the behavior of spatial point processes when subjected to a class of linear transformations indexed by a variable T. It was shown in Ellis [Adv. in Appl. Probab. 18 (1986) 646-659] that, under mild assumptions, the transformed processes behave approximately like Poisson processes for large T. In this article, under very similar assumptions, explicit upper bounds are given for the $d_{2}$-distance between the corresponding point process distributions. A number of related results, and applications to kernel density estimation and long range dependence testing are also presented. The main results are proved by applying a generalized Stein-Chen method to discretized versions of the point processes.</description><subject>60G55</subject><subject>62E20</subject><subject>62G07</subject><subject>Approximation</subject><subject>Coordinate systems</subject><subject>Density</subject><subject>Density estimation</subject><subject>dt₂-distance</subject><subject>Perceptron convergence procedure</subject><subject>Point estimators</subject><subject>Point processes</subject><subject>Poisson process</subject><subject>Poisson process approximation</subject><subject>Random variables</subject><subject>Stein’s method</subject><subject>Test ranges</subject><subject>Topology</subject><subject>total variation distance</subject><issn>1050-5164</issn><issn>2168-8737</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNplUNtKAzEQDaJgrf6AIOwPrM4k2WTzWItWYcGC9nmJucCW2oRkC_r3prb0xYGZAzPnnBmGkFuEe6TIHxAaaFAAh78QLT8jE4qirVvJ5DmZ7Al1YfBLcpXzunAUV3JCmlWMLlWPYbe1ufIhVe9Rj4PeVMswbMdqmYJxOVezGFP4Hr7KLGzzNbnwepPdzRGnZPX89DF_qbu3xet81tWGSRxLpR688tiitI2hgnnNnUEmVElokWopuOHI0IK1n9IYqpQF31CNqAybktnBtyxfOzO6ndkMto-pHJJ--qCHfr7qjt0j6KBjjwiSShSCFg968DAp5JycP8kR-v3z-v_PK6K7g2idx5BOCgbAWkYV-wUd_2rF</recordid><startdate>20050201</startdate><enddate>20050201</enddate><creator>Schuhmacher, Dominic</creator><general>Institute of Mathematical Statistics</general><general>The Institute of Mathematical Statistics</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20050201</creationdate><title>Upper Bounds for Spatial Point Process Approximations</title><author>Schuhmacher, Dominic</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c371t-c32f0f9f1817d5c263fa4ec13691360812a764c4131d0ddb7cc299d0f52a119c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>60G55</topic><topic>62E20</topic><topic>62G07</topic><topic>Approximation</topic><topic>Coordinate systems</topic><topic>Density</topic><topic>Density estimation</topic><topic>dt₂-distance</topic><topic>Perceptron convergence procedure</topic><topic>Point estimators</topic><topic>Point processes</topic><topic>Poisson process</topic><topic>Poisson process approximation</topic><topic>Random variables</topic><topic>Stein’s method</topic><topic>Test ranges</topic><topic>Topology</topic><topic>total variation distance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schuhmacher, Dominic</creatorcontrib><collection>CrossRef</collection><jtitle>The Annals of applied probability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schuhmacher, Dominic</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Upper Bounds for Spatial Point Process Approximations</atitle><jtitle>The Annals of applied probability</jtitle><date>2005-02-01</date><risdate>2005</risdate><volume>15</volume><issue>1B</issue><spage>615</spage><epage>651</epage><pages>615-651</pages><issn>1050-5164</issn><eissn>2168-8737</eissn><abstract>We consider the behavior of spatial point processes when subjected to a class of linear transformations indexed by a variable T. It was shown in Ellis [Adv. in Appl. Probab. 18 (1986) 646-659] that, under mild assumptions, the transformed processes behave approximately like Poisson processes for large T. In this article, under very similar assumptions, explicit upper bounds are given for the $d_{2}$-distance between the corresponding point process distributions. A number of related results, and applications to kernel density estimation and long range dependence testing are also presented. The main results are proved by applying a generalized Stein-Chen method to discretized versions of the point processes.</abstract><pub>Institute of Mathematical Statistics</pub><doi>10.1214/105051604000000684</doi><tpages>37</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1050-5164
ispartof The Annals of applied probability, 2005-02, Vol.15 (1B), p.615-651
issn 1050-5164
2168-8737
language eng
recordid cdi_projecteuclid_primary_oai_CULeuclid_euclid_aoap_1107271662
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing; Project Euclid Complete
subjects 60G55
62E20
62G07
Approximation
Coordinate systems
Density
Density estimation
dt₂-distance
Perceptron convergence procedure
Point estimators
Point processes
Poisson process
Poisson process approximation
Random variables
Stein’s method
Test ranges
Topology
total variation distance
title Upper Bounds for Spatial Point Process Approximations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T05%3A56%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proje&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Upper%20Bounds%20for%20Spatial%20Point%20Process%20Approximations&rft.jtitle=The%20Annals%20of%20applied%20probability&rft.au=Schuhmacher,%20Dominic&rft.date=2005-02-01&rft.volume=15&rft.issue=1B&rft.spage=615&rft.epage=651&rft.pages=615-651&rft.issn=1050-5164&rft.eissn=2168-8737&rft_id=info:doi/10.1214/105051604000000684&rft_dat=%3Cjstor_proje%3E30038329%3C/jstor_proje%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=30038329&rfr_iscdi=true