Upper Bounds for Spatial Point Process Approximations
We consider the behavior of spatial point processes when subjected to a class of linear transformations indexed by a variable T. It was shown in Ellis [Adv. in Appl. Probab. 18 (1986) 646-659] that, under mild assumptions, the transformed processes behave approximately like Poisson processes for lar...
Gespeichert in:
Veröffentlicht in: | The Annals of applied probability 2005-02, Vol.15 (1B), p.615-651 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider the behavior of spatial point processes when subjected to a class of linear transformations indexed by a variable T. It was shown in Ellis [Adv. in Appl. Probab. 18 (1986) 646-659] that, under mild assumptions, the transformed processes behave approximately like Poisson processes for large T. In this article, under very similar assumptions, explicit upper bounds are given for the $d_{2}$-distance between the corresponding point process distributions. A number of related results, and applications to kernel density estimation and long range dependence testing are also presented. The main results are proved by applying a generalized Stein-Chen method to discretized versions of the point processes. |
---|---|
ISSN: | 1050-5164 2168-8737 |
DOI: | 10.1214/105051604000000684 |