Upper Bounds for Spatial Point Process Approximations

We consider the behavior of spatial point processes when subjected to a class of linear transformations indexed by a variable T. It was shown in Ellis [Adv. in Appl. Probab. 18 (1986) 646-659] that, under mild assumptions, the transformed processes behave approximately like Poisson processes for lar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Annals of applied probability 2005-02, Vol.15 (1B), p.615-651
1. Verfasser: Schuhmacher, Dominic
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider the behavior of spatial point processes when subjected to a class of linear transformations indexed by a variable T. It was shown in Ellis [Adv. in Appl. Probab. 18 (1986) 646-659] that, under mild assumptions, the transformed processes behave approximately like Poisson processes for large T. In this article, under very similar assumptions, explicit upper bounds are given for the $d_{2}$-distance between the corresponding point process distributions. A number of related results, and applications to kernel density estimation and long range dependence testing are also presented. The main results are proved by applying a generalized Stein-Chen method to discretized versions of the point processes.
ISSN:1050-5164
2168-8737
DOI:10.1214/105051604000000684