Stability of Nonlinear Filters in Nonmixing Case

The nonlinear filtering equation is said to be stable if it "forgets" the initial condition. It is known that the filter might be unstable even if the signal is an ergodic Markov chain. In general, the filtering stability requires stronger signal ergodicity provided by the, so called, mixi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Annals of applied probability 2004-11, Vol.14 (4), p.2038-2056
Hauptverfasser: Chigansky, Pavel, Liptser, Robert
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The nonlinear filtering equation is said to be stable if it "forgets" the initial condition. It is known that the filter might be unstable even if the signal is an ergodic Markov chain. In general, the filtering stability requires stronger signal ergodicity provided by the, so called, mixing condition. The latter is formulated in terms of the transition probability density of the signal. The most restrictive requirement of the mixing condition is the uniform positiveness of this density. We show that it might be relaxed regardless of an observation process structure.
ISSN:1050-5164
2168-8737
DOI:10.1214/105051604000000873