Local Limit Theory and Large Deviations for Supercritical Branching Processes
In this paper we study several aspects of the growth of a supercritical Galton-Watson process$\lbrace Z_n:n \geq 1\rbrace$, and bring out some criticality phenomena determined by the$Schr\ddot{o}der$constant. We develop the local limit theory of Zn, that is, the behavior of$P(Z_n = \upsilon_n)$as$\u...
Gespeichert in:
Veröffentlicht in: | The Annals of applied probability 2004-08, Vol.14 (3), p.1135-1166 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper we study several aspects of the growth of a supercritical Galton-Watson process$\lbrace Z_n:n \geq 1\rbrace$, and bring out some criticality phenomena determined by the$Schr\ddot{o}der$constant. We develop the local limit theory of Zn, that is, the behavior of$P(Z_n = \upsilon_n)$as$\upsilon_n \nearrow \infty$, and use this to study conditional large deviations of$\lbrace Y_{Z_n} :n \geq 1\rbrace$, where Ynsatisfies an LDP, particularly of$\lbrace Z_n^{-1} Z_{n+1} :n \geq 1\rbrace$conditioned on$Z_n \geq \upsilon_n$. |
---|---|
ISSN: | 1050-5164 2168-8737 |
DOI: | 10.1214/105051604000000242 |