Functional Large Deviation Principles for First-Passage-Time Processes

We apply an extended contraction principle and superexponential convergence in probability to show that a functional large deviation principle for a sequence of stochastic processes implies a corresponding functional large deviation principle for an associated sequence of first-passage-time or inver...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Annals of applied probability 1997-05, Vol.7 (2), p.362-381
Hauptverfasser: Puhalskii, Anatolii A., Whitt, Ward
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We apply an extended contraction principle and superexponential convergence in probability to show that a functional large deviation principle for a sequence of stochastic processes implies a corresponding functional large deviation principle for an associated sequence of first-passage-time or inverse processes. Large deviation principles are established for both inverse processes and centered inverse processes, based on corresponding results for the original process. We apply these results to obtain functional large deviation principles for renewal processes and superpositions of independent renewal processes.
ISSN:1050-5164
2168-8737
DOI:10.1214/aoap/1034625336