Chernoff-Type Bound for Finite Markov Chains

This paper develops bounds on the distribution function of the empirical mean for irreducible finite-state Markov chains. One approach, explored by Gillman, reduces this problem to bounding the largest eigenvalue of a perturbation of the transition matrix for the Markov chain. By using estimates on...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Annals of applied probability 1998-08, Vol.8 (3), p.849-867
1. Verfasser: Lezaud, Pascal
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper develops bounds on the distribution function of the empirical mean for irreducible finite-state Markov chains. One approach, explored by Gillman, reduces this problem to bounding the largest eigenvalue of a perturbation of the transition matrix for the Markov chain. By using estimates on eigenvalues given in Kato's book Perturbation Theory for Linear Operators, we simplify the proof of Gillman and extend it to nonreversible finite-state Markov chains and continuous time. We also set out another method, directly applicable to some general ergodic Markov kernels having a spectral gap.
ISSN:1050-5164
2168-8737
DOI:10.1214/aoap/1028903453