A Dynamic Maximum Principle for the Optimization of Recursive Utilities under Constraints

This paper examines the continuous-time portfolio-consumption problem of an agent with a recursive utility in the presence of nonlinear constraints on the wealth. Using backward stochastic differential equations, we state a dynamic maximum principle which generalizes the characterization of optimal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Annals of applied probability 2001-08, Vol.11 (3), p.664-693
Hauptverfasser: El Karoui, N., Peng, S., Quenez, M. C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper examines the continuous-time portfolio-consumption problem of an agent with a recursive utility in the presence of nonlinear constraints on the wealth. Using backward stochastic differential equations, we state a dynamic maximum principle which generalizes the characterization of optimal policies obtained by Duffie and Skiadas [J. Math Econ. 23, 107-131 (1994)] in the case of a linear wealth. From this property, we derive a characterization of optimal wealth and utility processes as the unique solution of a forward-backward system. Existence of an optimal policy is also established via a penalization method.
ISSN:1050-5164
2168-8737
DOI:10.1214/aoap/1015345345