Perfect Sampling of Ergodic Harris Chains

We develop an algorithm for simulating "perfect" random samples from the invariant measure of a Harris recurrent Markov chain. The method uses backward coupling of embedded regeneration times and works most effectively for stochastically monotone chains, where paths may be sandwiched betwe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Annals of applied probability 2001-05, Vol.11 (2), p.438-451
Hauptverfasser: Corcoran, J. N., Tweedie, R. L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We develop an algorithm for simulating "perfect" random samples from the invariant measure of a Harris recurrent Markov chain. The method uses backward coupling of embedded regeneration times and works most effectively for stochastically monotone chains, where paths may be sandwiched between "upper" and "lower" processes. We give an approach to finding analytic bounds on the backward coupling times in the stochastically monotone case. An application to storage models is given.
ISSN:1050-5164
2168-8737
DOI:10.1214/aoap/1015345299