Stein’s method in high dimensions with applications
Let h be a three times partially differentiable function on \mathbb{R}^{n}, let X=(X_{1},\ldots,X_{n}) be a collection of real-valued random variables and let Z=(Z_{1},\ldots,Z_{n}) be a multivariate Gaussian vector. In this article, we develop Stein’s method to give error bounds on the difference \...
Gespeichert in:
Veröffentlicht in: | Annales de l'I.H.P. Probabilités et statistiques 2013-05, Vol.49 (2), p.529-549 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let h be a three times partially differentiable function on \mathbb{R}^{n}, let X=(X_{1},\ldots,X_{n}) be a collection of real-valued random variables and let Z=(Z_{1},\ldots,Z_{n}) be a multivariate Gaussian vector. In this article, we develop Stein’s method to give error bounds on the difference \mathbb{E}h(X)-\mathbb{E}h(Z) in cases where the coordinates of X are not necessarily independent, focusing on the high dimensional case n\to\infty. In order to express the dependency structure we use Stein couplings, which allows for a broad range of applications, such as classic occupancy, local dependence, Curie–Weiss model, etc. We will also give applications to the Sherrington–Kirkpatrick model and last passage percolation on thin rectangles. |
---|---|
ISSN: | 0246-0203 |
DOI: | 10.1214/11-AIHP473 |