A nonasymptotic theorem for unnormalized Feynman-Kac particle models
We present a nonasymptotic theorem for interacting particle approximations of unnormalized Feynman-Kac models. We provide an original stochastic analysis-based on Feynman-Kac semigroup techniques combined with recently developed coalescent tree-based functional representations of particle block dist...
Gespeichert in:
Veröffentlicht in: | Annales de l'I.H.P. Probabilités et statistiques 2011-08, Vol.47 (3), p.629-649 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We present a nonasymptotic theorem for interacting particle approximations of unnormalized Feynman-Kac models. We provide an original stochastic analysis-based on Feynman-Kac semigroup techniques combined with recently developed coalescent tree-based functional representations of particle block distributions. We present some regularity conditions under which the L(2)-relative error of these weighted particle measures grows linearly with respect to the time horizon yielding what seems to be the first results of this type for this class of unnormalized models. We also illustrate these results in the context of particle absorption models, with a special interest in rare event analysis. |
---|---|
ISSN: | 0246-0203 1778-7017 |
DOI: | 10.1214/10-aihp358 |