Hitting time of a corner for a reflected diffusion in the square

We investigate the expectation of the hitting time of a neighborhood of the origin for a two dimensional reflected diffusion in the unit square. More specifically, we distinguish three different regimes depending on the sign of the correlation coefficient of the diffusion matrix at the point 0. For...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annales de l'I.H.P. Probabilités et statistiques 2008-10, Vol.44 (5), p.946-961
1. Verfasser: Delarue, F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We investigate the expectation of the hitting time of a neighborhood of the origin for a two dimensional reflected diffusion in the unit square. More specifically, we distinguish three different regimes depending on the sign of the correlation coefficient of the diffusion matrix at the point 0. For a positive correlation coefficient, the expectation of the hitting time is uniformly bounded as the neighborhood shrinks. For a negative one, the expectation explodes in a polynomial way as the diameter of the neighborhood vanishes. In the null case, the expectation explodes in a logarithmic rate. From a practical point of view, the considered hitting time appears as a deadlock time in various resource sharing problems.
ISSN:0246-0203
1778-7017
DOI:10.1214/07-AIHP128