Sufficient conditions for stability of longest-queue-first scheduling: second-order properties using fluid limits

We consider the stability of the longest-queue-first scheduling policy (LQF), a natural and low-complexity scheduling policy, for a generalized switch model. Unlike that of common scheduling policies, the stability of LQF depends on the variance of the arrival processes in addition to their average...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in applied probability 2006-06, Vol.38 (2), p.505-521
Hauptverfasser: Dimakis, Antonis, Walrand, Jean
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 521
container_issue 2
container_start_page 505
container_title Advances in applied probability
container_volume 38
creator Dimakis, Antonis
Walrand, Jean
description We consider the stability of the longest-queue-first scheduling policy (LQF), a natural and low-complexity scheduling policy, for a generalized switch model. Unlike that of common scheduling policies, the stability of LQF depends on the variance of the arrival processes in addition to their average intensities. We identify new sufficient conditions for LQF to be throughput optimal for independent, identically distributed arrival processes. Deterministic fluid analogs, proved to be powerful in the analysis of stability in queueing networks, do not adequately characterize the stability of LQF. We combine properties of diffusion-scaled sample path functionals and local fluid limits into a sharper characterization of stability.
doi_str_mv 10.1239/aap/1151337082
format Article
fullrecord <record><control><sourceid>jstor_proje</sourceid><recordid>TN_cdi_projecteuclid_primary_oai_CULeuclid_euclid_aap_1151337082</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1239_aap_1151337082</cupid><jstor_id>20443453</jstor_id><sourcerecordid>20443453</sourcerecordid><originalsourceid>FETCH-LOGICAL-c426t-42bf1f5aaa812e0c6002e1549c741e8f27b0d22161c088bbba62be268c72105f3</originalsourceid><addsrcrecordid>eNp1kTtPwzAQxy0EEuWxsiFZ7Ck-x3FcJlDFS6rEAMyR45yLqzQutjPw7TFqVQbEdLq7__3uRcgFsCnwcnat9eYaoIKyrJniB2QCoq4KyaQ4JBPGGBRK1uqYnMS4ym5ZKzYhn6-jtc44HBI1fuhccn6I1PpAY9Kt6136ot7S3g9LjKn4HHHEwroQE43mA7uxd8Pyhkb8qS586DDQTfAbDMlhpGPMaWr70XW0d2uX4hk5srqPeL6zp-T94f5t_lQsXh6f53eLwgguUyF4a8FWWmsFHJmRjHGESsxMLQCV5XXLOs5BgmFKtW2rJW-RS2VqDqyy5Sm53XLzNCs0CUfTu67ZBLfW4avx2jXz98UuujP5hM3vCTPiao_Ii8fUrPwYhjx1wwFkDbOqyqLpVmSCjzGg3bcA1vw85i_1cluwismHvZozIUpRlTnPdkC9boPrlvjb9h_kN0tonLM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>211671955</pqid></control><display><type>article</type><title>Sufficient conditions for stability of longest-queue-first scheduling: second-order properties using fluid limits</title><source>JSTOR Mathematics &amp; Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><source>Cambridge University Press Journals Complete</source><creator>Dimakis, Antonis ; Walrand, Jean</creator><creatorcontrib>Dimakis, Antonis ; Walrand, Jean</creatorcontrib><description>We consider the stability of the longest-queue-first scheduling policy (LQF), a natural and low-complexity scheduling policy, for a generalized switch model. Unlike that of common scheduling policies, the stability of LQF depends on the variance of the arrival processes in addition to their average intensities. We identify new sufficient conditions for LQF to be throughput optimal for independent, identically distributed arrival processes. Deterministic fluid analogs, proved to be powerful in the analysis of stability in queueing networks, do not adequately characterize the stability of LQF. We combine properties of diffusion-scaled sample path functionals and local fluid limits into a sharper characterization of stability.</description><identifier>ISSN: 0001-8678</identifier><identifier>EISSN: 1475-6064</identifier><identifier>DOI: 10.1239/aap/1151337082</identifier><identifier>CODEN: AAPBBD</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>60G17 ; 60K25 ; 90B15 ; Coordinate systems ; Determinism ; fluid limit ; General Applied Probability ; Generalized switch ; local fluid limit ; local pooling ; Logical proofs ; longest-queue-first scheduling ; Mathematical intervals ; Mathematical vectors ; Matrices ; MaxWeight scheduling ; Probability ; Queueing networks ; Queuing theory ; Random variables ; Scheduling ; Scheduling algorithms ; second-order condition ; stability ; Studies ; Sufficient conditions ; Systems stability ; throughput optimality ; Variances</subject><ispartof>Advances in applied probability, 2006-06, Vol.38 (2), p.505-521</ispartof><rights>Copyright © Applied Probability Trust 2006</rights><rights>Copyright 2006 Applied Probability Trust</rights><rights>Copyright Applied Probability Trust Jun 2006</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c426t-42bf1f5aaa812e0c6002e1549c741e8f27b0d22161c088bbba62be268c72105f3</citedby><cites>FETCH-LOGICAL-c426t-42bf1f5aaa812e0c6002e1549c741e8f27b0d22161c088bbba62be268c72105f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/20443453$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0001867800001075/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,230,315,781,785,804,833,886,27929,27930,55633,58022,58026,58255,58259</link.rule.ids></links><search><creatorcontrib>Dimakis, Antonis</creatorcontrib><creatorcontrib>Walrand, Jean</creatorcontrib><title>Sufficient conditions for stability of longest-queue-first scheduling: second-order properties using fluid limits</title><title>Advances in applied probability</title><addtitle>Advances in Applied Probability</addtitle><description>We consider the stability of the longest-queue-first scheduling policy (LQF), a natural and low-complexity scheduling policy, for a generalized switch model. Unlike that of common scheduling policies, the stability of LQF depends on the variance of the arrival processes in addition to their average intensities. We identify new sufficient conditions for LQF to be throughput optimal for independent, identically distributed arrival processes. Deterministic fluid analogs, proved to be powerful in the analysis of stability in queueing networks, do not adequately characterize the stability of LQF. We combine properties of diffusion-scaled sample path functionals and local fluid limits into a sharper characterization of stability.</description><subject>60G17</subject><subject>60K25</subject><subject>90B15</subject><subject>Coordinate systems</subject><subject>Determinism</subject><subject>fluid limit</subject><subject>General Applied Probability</subject><subject>Generalized switch</subject><subject>local fluid limit</subject><subject>local pooling</subject><subject>Logical proofs</subject><subject>longest-queue-first scheduling</subject><subject>Mathematical intervals</subject><subject>Mathematical vectors</subject><subject>Matrices</subject><subject>MaxWeight scheduling</subject><subject>Probability</subject><subject>Queueing networks</subject><subject>Queuing theory</subject><subject>Random variables</subject><subject>Scheduling</subject><subject>Scheduling algorithms</subject><subject>second-order condition</subject><subject>stability</subject><subject>Studies</subject><subject>Sufficient conditions</subject><subject>Systems stability</subject><subject>throughput optimality</subject><subject>Variances</subject><issn>0001-8678</issn><issn>1475-6064</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNp1kTtPwzAQxy0EEuWxsiFZ7Ck-x3FcJlDFS6rEAMyR45yLqzQutjPw7TFqVQbEdLq7__3uRcgFsCnwcnat9eYaoIKyrJniB2QCoq4KyaQ4JBPGGBRK1uqYnMS4ym5ZKzYhn6-jtc44HBI1fuhccn6I1PpAY9Kt6136ot7S3g9LjKn4HHHEwroQE43mA7uxd8Pyhkb8qS586DDQTfAbDMlhpGPMaWr70XW0d2uX4hk5srqPeL6zp-T94f5t_lQsXh6f53eLwgguUyF4a8FWWmsFHJmRjHGESsxMLQCV5XXLOs5BgmFKtW2rJW-RS2VqDqyy5Sm53XLzNCs0CUfTu67ZBLfW4avx2jXz98UuujP5hM3vCTPiao_Ii8fUrPwYhjx1wwFkDbOqyqLpVmSCjzGg3bcA1vw85i_1cluwismHvZozIUpRlTnPdkC9boPrlvjb9h_kN0tonLM</recordid><startdate>20060601</startdate><enddate>20060601</enddate><creator>Dimakis, Antonis</creator><creator>Walrand, Jean</creator><general>Cambridge University Press</general><general>Applied Probability Trust</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20060601</creationdate><title>Sufficient conditions for stability of longest-queue-first scheduling: second-order properties using fluid limits</title><author>Dimakis, Antonis ; Walrand, Jean</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c426t-42bf1f5aaa812e0c6002e1549c741e8f27b0d22161c088bbba62be268c72105f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>60G17</topic><topic>60K25</topic><topic>90B15</topic><topic>Coordinate systems</topic><topic>Determinism</topic><topic>fluid limit</topic><topic>General Applied Probability</topic><topic>Generalized switch</topic><topic>local fluid limit</topic><topic>local pooling</topic><topic>Logical proofs</topic><topic>longest-queue-first scheduling</topic><topic>Mathematical intervals</topic><topic>Mathematical vectors</topic><topic>Matrices</topic><topic>MaxWeight scheduling</topic><topic>Probability</topic><topic>Queueing networks</topic><topic>Queuing theory</topic><topic>Random variables</topic><topic>Scheduling</topic><topic>Scheduling algorithms</topic><topic>second-order condition</topic><topic>stability</topic><topic>Studies</topic><topic>Sufficient conditions</topic><topic>Systems stability</topic><topic>throughput optimality</topic><topic>Variances</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dimakis, Antonis</creatorcontrib><creatorcontrib>Walrand, Jean</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Advances in applied probability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dimakis, Antonis</au><au>Walrand, Jean</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sufficient conditions for stability of longest-queue-first scheduling: second-order properties using fluid limits</atitle><jtitle>Advances in applied probability</jtitle><addtitle>Advances in Applied Probability</addtitle><date>2006-06-01</date><risdate>2006</risdate><volume>38</volume><issue>2</issue><spage>505</spage><epage>521</epage><pages>505-521</pages><issn>0001-8678</issn><eissn>1475-6064</eissn><coden>AAPBBD</coden><abstract>We consider the stability of the longest-queue-first scheduling policy (LQF), a natural and low-complexity scheduling policy, for a generalized switch model. Unlike that of common scheduling policies, the stability of LQF depends on the variance of the arrival processes in addition to their average intensities. We identify new sufficient conditions for LQF to be throughput optimal for independent, identically distributed arrival processes. Deterministic fluid analogs, proved to be powerful in the analysis of stability in queueing networks, do not adequately characterize the stability of LQF. We combine properties of diffusion-scaled sample path functionals and local fluid limits into a sharper characterization of stability.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1239/aap/1151337082</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0001-8678
ispartof Advances in applied probability, 2006-06, Vol.38 (2), p.505-521
issn 0001-8678
1475-6064
language eng
recordid cdi_projecteuclid_primary_oai_CULeuclid_euclid_aap_1151337082
source JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing; Cambridge University Press Journals Complete
subjects 60G17
60K25
90B15
Coordinate systems
Determinism
fluid limit
General Applied Probability
Generalized switch
local fluid limit
local pooling
Logical proofs
longest-queue-first scheduling
Mathematical intervals
Mathematical vectors
Matrices
MaxWeight scheduling
Probability
Queueing networks
Queuing theory
Random variables
Scheduling
Scheduling algorithms
second-order condition
stability
Studies
Sufficient conditions
Systems stability
throughput optimality
Variances
title Sufficient conditions for stability of longest-queue-first scheduling: second-order properties using fluid limits
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T08%3A14%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proje&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sufficient%20conditions%20for%20stability%20of%20longest-queue-first%20scheduling:%20second-order%20properties%20using%20fluid%20limits&rft.jtitle=Advances%20in%20applied%20probability&rft.au=Dimakis,%20Antonis&rft.date=2006-06-01&rft.volume=38&rft.issue=2&rft.spage=505&rft.epage=521&rft.pages=505-521&rft.issn=0001-8678&rft.eissn=1475-6064&rft.coden=AAPBBD&rft_id=info:doi/10.1239/aap/1151337082&rft_dat=%3Cjstor_proje%3E20443453%3C/jstor_proje%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=211671955&rft_id=info:pmid/&rft_cupid=10_1239_aap_1151337082&rft_jstor_id=20443453&rfr_iscdi=true