Sufficient conditions for stability of longest-queue-first scheduling: second-order properties using fluid limits
We consider the stability of the longest-queue-first scheduling policy (LQF), a natural and low-complexity scheduling policy, for a generalized switch model. Unlike that of common scheduling policies, the stability of LQF depends on the variance of the arrival processes in addition to their average...
Gespeichert in:
Veröffentlicht in: | Advances in applied probability 2006-06, Vol.38 (2), p.505-521 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 521 |
---|---|
container_issue | 2 |
container_start_page | 505 |
container_title | Advances in applied probability |
container_volume | 38 |
creator | Dimakis, Antonis Walrand, Jean |
description | We consider the stability of the longest-queue-first scheduling policy (LQF), a natural and low-complexity scheduling policy, for a generalized switch model. Unlike that of common scheduling policies, the stability of LQF depends on the variance of the arrival processes in addition to their average intensities. We identify new sufficient conditions for LQF to be throughput optimal for independent, identically distributed arrival processes. Deterministic fluid analogs, proved to be powerful in the analysis of stability in queueing networks, do not adequately characterize the stability of LQF. We combine properties of diffusion-scaled sample path functionals and local fluid limits into a sharper characterization of stability. |
doi_str_mv | 10.1239/aap/1151337082 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proje</sourceid><recordid>TN_cdi_projecteuclid_primary_oai_CULeuclid_euclid_aap_1151337082</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1239_aap_1151337082</cupid><jstor_id>20443453</jstor_id><sourcerecordid>20443453</sourcerecordid><originalsourceid>FETCH-LOGICAL-c426t-42bf1f5aaa812e0c6002e1549c741e8f27b0d22161c088bbba62be268c72105f3</originalsourceid><addsrcrecordid>eNp1kTtPwzAQxy0EEuWxsiFZ7Ck-x3FcJlDFS6rEAMyR45yLqzQutjPw7TFqVQbEdLq7__3uRcgFsCnwcnat9eYaoIKyrJniB2QCoq4KyaQ4JBPGGBRK1uqYnMS4ym5ZKzYhn6-jtc44HBI1fuhccn6I1PpAY9Kt6136ot7S3g9LjKn4HHHEwroQE43mA7uxd8Pyhkb8qS586DDQTfAbDMlhpGPMaWr70XW0d2uX4hk5srqPeL6zp-T94f5t_lQsXh6f53eLwgguUyF4a8FWWmsFHJmRjHGESsxMLQCV5XXLOs5BgmFKtW2rJW-RS2VqDqyy5Sm53XLzNCs0CUfTu67ZBLfW4avx2jXz98UuujP5hM3vCTPiao_Ii8fUrPwYhjx1wwFkDbOqyqLpVmSCjzGg3bcA1vw85i_1cluwismHvZozIUpRlTnPdkC9boPrlvjb9h_kN0tonLM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>211671955</pqid></control><display><type>article</type><title>Sufficient conditions for stability of longest-queue-first scheduling: second-order properties using fluid limits</title><source>JSTOR Mathematics & Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><source>Cambridge University Press Journals Complete</source><creator>Dimakis, Antonis ; Walrand, Jean</creator><creatorcontrib>Dimakis, Antonis ; Walrand, Jean</creatorcontrib><description>We consider the stability of the longest-queue-first scheduling policy (LQF), a natural and low-complexity scheduling policy, for a generalized switch model. Unlike that of common scheduling policies, the stability of LQF depends on the variance of the arrival processes in addition to their average intensities. We identify new sufficient conditions for LQF to be throughput optimal for independent, identically distributed arrival processes. Deterministic fluid analogs, proved to be powerful in the analysis of stability in queueing networks, do not adequately characterize the stability of LQF. We combine properties of diffusion-scaled sample path functionals and local fluid limits into a sharper characterization of stability.</description><identifier>ISSN: 0001-8678</identifier><identifier>EISSN: 1475-6064</identifier><identifier>DOI: 10.1239/aap/1151337082</identifier><identifier>CODEN: AAPBBD</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>60G17 ; 60K25 ; 90B15 ; Coordinate systems ; Determinism ; fluid limit ; General Applied Probability ; Generalized switch ; local fluid limit ; local pooling ; Logical proofs ; longest-queue-first scheduling ; Mathematical intervals ; Mathematical vectors ; Matrices ; MaxWeight scheduling ; Probability ; Queueing networks ; Queuing theory ; Random variables ; Scheduling ; Scheduling algorithms ; second-order condition ; stability ; Studies ; Sufficient conditions ; Systems stability ; throughput optimality ; Variances</subject><ispartof>Advances in applied probability, 2006-06, Vol.38 (2), p.505-521</ispartof><rights>Copyright © Applied Probability Trust 2006</rights><rights>Copyright 2006 Applied Probability Trust</rights><rights>Copyright Applied Probability Trust Jun 2006</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c426t-42bf1f5aaa812e0c6002e1549c741e8f27b0d22161c088bbba62be268c72105f3</citedby><cites>FETCH-LOGICAL-c426t-42bf1f5aaa812e0c6002e1549c741e8f27b0d22161c088bbba62be268c72105f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/20443453$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0001867800001075/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,230,315,781,785,804,833,886,27929,27930,55633,58022,58026,58255,58259</link.rule.ids></links><search><creatorcontrib>Dimakis, Antonis</creatorcontrib><creatorcontrib>Walrand, Jean</creatorcontrib><title>Sufficient conditions for stability of longest-queue-first scheduling: second-order properties using fluid limits</title><title>Advances in applied probability</title><addtitle>Advances in Applied Probability</addtitle><description>We consider the stability of the longest-queue-first scheduling policy (LQF), a natural and low-complexity scheduling policy, for a generalized switch model. Unlike that of common scheduling policies, the stability of LQF depends on the variance of the arrival processes in addition to their average intensities. We identify new sufficient conditions for LQF to be throughput optimal for independent, identically distributed arrival processes. Deterministic fluid analogs, proved to be powerful in the analysis of stability in queueing networks, do not adequately characterize the stability of LQF. We combine properties of diffusion-scaled sample path functionals and local fluid limits into a sharper characterization of stability.</description><subject>60G17</subject><subject>60K25</subject><subject>90B15</subject><subject>Coordinate systems</subject><subject>Determinism</subject><subject>fluid limit</subject><subject>General Applied Probability</subject><subject>Generalized switch</subject><subject>local fluid limit</subject><subject>local pooling</subject><subject>Logical proofs</subject><subject>longest-queue-first scheduling</subject><subject>Mathematical intervals</subject><subject>Mathematical vectors</subject><subject>Matrices</subject><subject>MaxWeight scheduling</subject><subject>Probability</subject><subject>Queueing networks</subject><subject>Queuing theory</subject><subject>Random variables</subject><subject>Scheduling</subject><subject>Scheduling algorithms</subject><subject>second-order condition</subject><subject>stability</subject><subject>Studies</subject><subject>Sufficient conditions</subject><subject>Systems stability</subject><subject>throughput optimality</subject><subject>Variances</subject><issn>0001-8678</issn><issn>1475-6064</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNp1kTtPwzAQxy0EEuWxsiFZ7Ck-x3FcJlDFS6rEAMyR45yLqzQutjPw7TFqVQbEdLq7__3uRcgFsCnwcnat9eYaoIKyrJniB2QCoq4KyaQ4JBPGGBRK1uqYnMS4ym5ZKzYhn6-jtc44HBI1fuhccn6I1PpAY9Kt6136ot7S3g9LjKn4HHHEwroQE43mA7uxd8Pyhkb8qS586DDQTfAbDMlhpGPMaWr70XW0d2uX4hk5srqPeL6zp-T94f5t_lQsXh6f53eLwgguUyF4a8FWWmsFHJmRjHGESsxMLQCV5XXLOs5BgmFKtW2rJW-RS2VqDqyy5Sm53XLzNCs0CUfTu67ZBLfW4avx2jXz98UuujP5hM3vCTPiao_Ii8fUrPwYhjx1wwFkDbOqyqLpVmSCjzGg3bcA1vw85i_1cluwismHvZozIUpRlTnPdkC9boPrlvjb9h_kN0tonLM</recordid><startdate>20060601</startdate><enddate>20060601</enddate><creator>Dimakis, Antonis</creator><creator>Walrand, Jean</creator><general>Cambridge University Press</general><general>Applied Probability Trust</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20060601</creationdate><title>Sufficient conditions for stability of longest-queue-first scheduling: second-order properties using fluid limits</title><author>Dimakis, Antonis ; Walrand, Jean</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c426t-42bf1f5aaa812e0c6002e1549c741e8f27b0d22161c088bbba62be268c72105f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>60G17</topic><topic>60K25</topic><topic>90B15</topic><topic>Coordinate systems</topic><topic>Determinism</topic><topic>fluid limit</topic><topic>General Applied Probability</topic><topic>Generalized switch</topic><topic>local fluid limit</topic><topic>local pooling</topic><topic>Logical proofs</topic><topic>longest-queue-first scheduling</topic><topic>Mathematical intervals</topic><topic>Mathematical vectors</topic><topic>Matrices</topic><topic>MaxWeight scheduling</topic><topic>Probability</topic><topic>Queueing networks</topic><topic>Queuing theory</topic><topic>Random variables</topic><topic>Scheduling</topic><topic>Scheduling algorithms</topic><topic>second-order condition</topic><topic>stability</topic><topic>Studies</topic><topic>Sufficient conditions</topic><topic>Systems stability</topic><topic>throughput optimality</topic><topic>Variances</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dimakis, Antonis</creatorcontrib><creatorcontrib>Walrand, Jean</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Advances in applied probability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dimakis, Antonis</au><au>Walrand, Jean</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sufficient conditions for stability of longest-queue-first scheduling: second-order properties using fluid limits</atitle><jtitle>Advances in applied probability</jtitle><addtitle>Advances in Applied Probability</addtitle><date>2006-06-01</date><risdate>2006</risdate><volume>38</volume><issue>2</issue><spage>505</spage><epage>521</epage><pages>505-521</pages><issn>0001-8678</issn><eissn>1475-6064</eissn><coden>AAPBBD</coden><abstract>We consider the stability of the longest-queue-first scheduling policy (LQF), a natural and low-complexity scheduling policy, for a generalized switch model. Unlike that of common scheduling policies, the stability of LQF depends on the variance of the arrival processes in addition to their average intensities. We identify new sufficient conditions for LQF to be throughput optimal for independent, identically distributed arrival processes. Deterministic fluid analogs, proved to be powerful in the analysis of stability in queueing networks, do not adequately characterize the stability of LQF. We combine properties of diffusion-scaled sample path functionals and local fluid limits into a sharper characterization of stability.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1239/aap/1151337082</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0001-8678 |
ispartof | Advances in applied probability, 2006-06, Vol.38 (2), p.505-521 |
issn | 0001-8678 1475-6064 |
language | eng |
recordid | cdi_projecteuclid_primary_oai_CULeuclid_euclid_aap_1151337082 |
source | JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing; Cambridge University Press Journals Complete |
subjects | 60G17 60K25 90B15 Coordinate systems Determinism fluid limit General Applied Probability Generalized switch local fluid limit local pooling Logical proofs longest-queue-first scheduling Mathematical intervals Mathematical vectors Matrices MaxWeight scheduling Probability Queueing networks Queuing theory Random variables Scheduling Scheduling algorithms second-order condition stability Studies Sufficient conditions Systems stability throughput optimality Variances |
title | Sufficient conditions for stability of longest-queue-first scheduling: second-order properties using fluid limits |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T08%3A14%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proje&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sufficient%20conditions%20for%20stability%20of%20longest-queue-first%20scheduling:%20second-order%20properties%20using%20fluid%20limits&rft.jtitle=Advances%20in%20applied%20probability&rft.au=Dimakis,%20Antonis&rft.date=2006-06-01&rft.volume=38&rft.issue=2&rft.spage=505&rft.epage=521&rft.pages=505-521&rft.issn=0001-8678&rft.eissn=1475-6064&rft.coden=AAPBBD&rft_id=info:doi/10.1239/aap/1151337082&rft_dat=%3Cjstor_proje%3E20443453%3C/jstor_proje%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=211671955&rft_id=info:pmid/&rft_cupid=10_1239_aap_1151337082&rft_jstor_id=20443453&rfr_iscdi=true |