Sufficient conditions for stability of longest-queue-first scheduling: second-order properties using fluid limits

We consider the stability of the longest-queue-first scheduling policy (LQF), a natural and low-complexity scheduling policy, for a generalized switch model. Unlike that of common scheduling policies, the stability of LQF depends on the variance of the arrival processes in addition to their average...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in applied probability 2006-06, Vol.38 (2), p.505-521
Hauptverfasser: Dimakis, Antonis, Walrand, Jean
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider the stability of the longest-queue-first scheduling policy (LQF), a natural and low-complexity scheduling policy, for a generalized switch model. Unlike that of common scheduling policies, the stability of LQF depends on the variance of the arrival processes in addition to their average intensities. We identify new sufficient conditions for LQF to be throughput optimal for independent, identically distributed arrival processes. Deterministic fluid analogs, proved to be powerful in the analysis of stability in queueing networks, do not adequately characterize the stability of LQF. We combine properties of diffusion-scaled sample path functionals and local fluid limits into a sharper characterization of stability.
ISSN:0001-8678
1475-6064
DOI:10.1239/aap/1151337082