On the number of vertices with a given degree in a Galton-Watson tree
Let Y k (ω) (k ≥ 0) be the number of vertices of a Galton-Watson tree ω that have k children, so that Z(ω) := ∑ k≥0 Y k (ω) is the total progeny of ω. In this paper, we will prove various statistical properties of Z and Y k . We first show, under a mild condition, an asymptotic expansion of P(Z = n)...
Gespeichert in:
Veröffentlicht in: | Advances in applied probability 2005-03, Vol.37 (1), p.229-264 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let Y
k
(ω) (k ≥ 0) be the number of vertices of a Galton-Watson tree ω that have k children, so that Z(ω) := ∑
k≥0
Y
k
(ω) is the total progeny of ω. In this paper, we will prove various statistical properties of Z and Y
k
. We first show, under a mild condition, an asymptotic expansion of P(Z = n) as n → ∞, improving the theorem of Otter (1949). Next, we show that
Y
k
(ω) := ∑
j=0
k
Y
j
(ω) is the total progeny of a new Galton-Watson tree that is hidden in the original tree ω. We then proceed to study the joint probability distribution of Z and Y
k
k
, and show that, as n → ∞, Y
k
/n
k
is asymptotically Gaussian under the conditional distribution P(· | Z = n). |
---|---|
ISSN: | 0001-8678 1475-6064 |
DOI: | 10.1239/aap/1113402407 |