On the number of vertices with a given degree in a Galton-Watson tree

Let Y k (ω) (k ≥ 0) be the number of vertices of a Galton-Watson tree ω that have k children, so that Z(ω) := ∑ k≥0 Y k (ω) is the total progeny of ω. In this paper, we will prove various statistical properties of Z and Y k . We first show, under a mild condition, an asymptotic expansion of P(Z = n)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in applied probability 2005-03, Vol.37 (1), p.229-264
1. Verfasser: Minami, Nariyuki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let Y k (ω) (k ≥ 0) be the number of vertices of a Galton-Watson tree ω that have k children, so that Z(ω) := ∑ k≥0 Y k (ω) is the total progeny of ω. In this paper, we will prove various statistical properties of Z and Y k . We first show, under a mild condition, an asymptotic expansion of P(Z = n) as n → ∞, improving the theorem of Otter (1949). Next, we show that Y k (ω) := ∑ j=0 k Y j (ω) is the total progeny of a new Galton-Watson tree that is hidden in the original tree ω. We then proceed to study the joint probability distribution of Z and Y k k , and show that, as n → ∞, Y k /n k is asymptotically Gaussian under the conditional distribution P(· | Z = n).
ISSN:0001-8678
1475-6064
DOI:10.1239/aap/1113402407