Convergence of the one-dimensional Kohonen algorithm

We show in a very general framework the a.s. convergence of the one-dimensional Kohonen algorithm–after self-organization–to its unique equilibrium when the learning rate decreases to 0 in a suitable way. The main requirement is a log-concavity assumption on the stimuli distribution which includes a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in applied probability 1998-09, Vol.30 (3), p.850-869
Hauptverfasser: Benaïm, Michel, Fort, Jean-Claude, Pagès, Gilles
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We show in a very general framework the a.s. convergence of the one-dimensional Kohonen algorithm–after self-organization–to its unique equilibrium when the learning rate decreases to 0 in a suitable way. The main requirement is a log-concavity assumption on the stimuli distribution which includes all the usual (truncated) probability distributions (uniform, exponential, gamma distribution with parameter ≥ 1, etc.). For the constant step algorithm, the weak convergence of the invariant distributions towards equilibrium as the step goes to 0 is established too. The main ingredients of the proof are the Poincaré-Hopf Theorem and a result of Hirsch on the convergence of cooperative dynamical systems.
ISSN:0001-8678
1475-6064
DOI:10.1239/aap/1035228132