N-Dimensional Fractional Lagrange's Inversion Theorem
Using Riemann-Liouville fractional differential operator, a fractional extension of the Lagrange inversion theorem and related formulas are developed. The required basic definitions, lemmas, and theorems in the fractional calculus are presented. A fractional form of Lagrange's expansion for one...
Gespeichert in:
Veröffentlicht in: | Abstract and Applied Analysis 2013-01, Vol.2013, p.342-352-331 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Using Riemann-Liouville fractional differential operator, a fractional extension of the Lagrange inversion theorem and related formulas are developed. The required basic definitions, lemmas, and theorems in the fractional calculus are presented. A fractional form of Lagrange's expansion for one implicitly defined independent variable is obtained. Then, a fractional version of Lagrange's expansion in more than one unknown function is generalized. For extending the treatment in higher dimensions, some relevant vectors and tensors definitions and notations are presented. A fractional Taylor expansion of a function of N-dimensional polyadics is derived. A fractional N-dimensional Lagrange inversion theorem is proved. |
---|---|
ISSN: | 1085-3375 1687-0409 |
DOI: | 10.1155/2013/310679 |