Activated Glycogen Synthase-3β Suppresses Cardiac Hypertrophy in vivo

The adult myocardium responds to a variety of pathologic stimuli by hypertrophic growth that frequently progresses to heart failure. The calcium/calmodulin-dependent protein phosphatase calcineurin is a potent transducer of hypertrophic stimuli. Calcineurin dephosphorylates members of the nuclear fa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2002-01, Vol.99 (2), p.907-912
Hauptverfasser: Antos, Christopher L., McKinsey, Timothy A., Frey, Norbert, Kutschke, William, McAnally, John, Shelton, John M., Richardson, James A., Hill, Joseph A., Olson, Eric N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The adult myocardium responds to a variety of pathologic stimuli by hypertrophic growth that frequently progresses to heart failure. The calcium/calmodulin-dependent protein phosphatase calcineurin is a potent transducer of hypertrophic stimuli. Calcineurin dephosphorylates members of the nuclear factor of activated T cell (NFAT) family of transcription factors, which results in their translocation to the nucleus and activation of calcium-dependent genes. Glycogen synthase kinase-3 (GSK-3) phosphorylates NFAT proteins and antagonizes the actions of calcineurin by stimulating NFAT nuclear export. To determine whether activated GSK-3 can act as an antagonist of hypertrophic signaling in the adult heart in vivo, we generated transgenic mice that express a constitutively active form of GSK-3β under control of a cardiac-specific promoter. These mice were physiologically normal under nonstressed conditions, but their ability to mount a hypertrophic response to calcineurin activation was severely impaired. Similarly, cardiac-specific expression of activated GSK-3β diminished hypertrophy in response to chronic β-adrenergic stimulation and pressure overload. These findings reveal a role for GSK-3β as an inhibitor of hypertrophic signaling in the intact myocardium and suggest that elevation of cardiac GSK-3β activity may provide clinical benefit in the treatment of pathologic hypertrophy and heart failure.
ISSN:0027-8424
1091-6490
DOI:10.1073/pnas.231619298