UV-Induced Replication Arrest in the Xeroderma Pigmentosum Variant Leads to DNA Double-Strand Breaks, γ-H2AX Formation, and Mre11 Relocalization

UV-induced replication arrest in the xeroderma pigmentosum variant (XPV) but not in normal cells leads to an accumulation of the Mre11/Rad50/Nbs1 complex and phosphorylated histone H2AX (γ-H2AX) in large nuclear foci at sites of stalled replication forks. These complexes have been shown to signal th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2002-01, Vol.99 (1), p.233-238
Hauptverfasser: Limoli, Charles L., Giedzinski, Erich, Bonner, William M., Cleaver, James E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:UV-induced replication arrest in the xeroderma pigmentosum variant (XPV) but not in normal cells leads to an accumulation of the Mre11/Rad50/Nbs1 complex and phosphorylated histone H2AX (γ-H2AX) in large nuclear foci at sites of stalled replication forks. These complexes have been shown to signal the presence of DNA damage, in particular, double-strand breaks (DSBs). This finding suggests that UV damage leads to the formation of DSBs during the course of replication arrest. After UV irradiation, XPV cells showed a fluence-dependent increase in the yield of γ-H2AX foci that paralleled the production of Mre11 foci. The percentage of foci-positive cells increased rapidly (10-15%) up to fluences of 10 J · m-2 before saturating at higher fluences. Frequencies of γ-H2AX and Mre11 foci both reached maxima at 4 h after UV irradiation. This pattern contrasts sharply to the situation observed after x-irradiation, where peak levels of γ-H2AX foci were found to precede the formation of Mre11 foci by several hours. The nuclear distributions of γ-H2AX and Mre11 were found to colocalize spatially after UV- but not x-irradiation. UV-irradiated XPV cells showed a one-to-one correspondence between Mre11 and γ-H2AX foci-positive cells. These results show that XPV cells develop DNA DSBs during the course of UV-induced replication arrest. These UV-induced foci occur in cells that are unable to carry out efficient bypass replication of UV damage and may contribute to further genetic variation.
ISSN:0027-8424
1091-6490
DOI:10.1073/pnas.231611798