Combined effects of insulin treatment and adipose tissue-specific agouti expression on the development of obesity

The agouti gene product is a secreted protein that acts in a paracrine manner to regulate coat color in mammals. Several dominant mutations at the agouti locus in mice cause the ectopic, ubiquitous expression of agouti, resulting in a condition similar to adult-onset obesity and non-insulin-dependen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 1997-02, Vol.94 (3), p.919-922
Hauptverfasser: Mynatt, R.L, Miltenberger, R.J, Klebig, M.L, Zemel, M.B, Wilkinson, J.E, Wilkison, W.O, Woychik, R.P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The agouti gene product is a secreted protein that acts in a paracrine manner to regulate coat color in mammals. Several dominant mutations at the agouti locus in mice cause the ectopic, ubiquitous expression of agouti, resulting in a condition similar to adult-onset obesity and non-insulin-dependent diabetes mellitus. The human agouti protein is 85% homologous to mouse agouti; however, unlike the mouse agouti gene, human agouti is normally expressed in adipose tissue. To address whether expression of agouti in human adipose tissue is physiologically relevant, transgenic mice were generated that express agouti in adipose tissue. Similar to most humans, these mice do not become obese or diabetic. However, we found that daily insulin injections significantly increased weight gain in the transgenic lines expressing agouti in adipose tissue, but not in nontransgenic mice. These results suggest that insulin triggers the onset of obesity and that agouti expression in adipose tissue potentiates this effect. Accordingly, the investigation of agouti's role in obesity and non-insulin-dependent diabetes mellitus in mice holds significant promise for understanding the pathophysiology of human obesity.
ISSN:0027-8424
1091-6490
DOI:10.1073/pnas.94.3.919