Fork-Like DNA Templates Support Bypass Replication of Lesions that Block DNA Synthesis on Single-Stranded Templates

DNA replication is an asymmetric process involving concurrent DNA synthesis on leading and lagging strands. Leading strand synthesis proceeds concomitantly with fork opening, whereas synthesis of the lagging strand essentially takes place on a single-stranded template. The effect of this duality on...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 1996-11, Vol.93 (24), p.13766-13769
Hauptverfasser: Hoffmann, Jean-Sebastien, Pillaire, Marie-Jeanne, Lesca, Claire, Burnouf, Dominique, Robert P. P. Fuchs, Defais, Martine, Villani, Giuseppe
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:DNA replication is an asymmetric process involving concurrent DNA synthesis on leading and lagging strands. Leading strand synthesis proceeds concomitantly with fork opening, whereas synthesis of the lagging strand essentially takes place on a single-stranded template. The effect of this duality on DNA damage processing by the cellular replication machinery was tested using eukaryotic cell extracts and model DNA substrates containing site-specific DNA adducts formed by the anticancer drug cisplatin or by the carcinogen N-2-acetylaminofluorene. Bypass of both lesions was observed only with fork-like substrates, whereas complete inhibition of DNA synthesis occurred on damaged single-stranded DNA substrates. These results suggest a role for additional accessory factors that permit DNA polymerases to bypass lesions when present in fork-like DNA.
ISSN:0027-8424
1091-6490
DOI:10.1073/pnas.93.24.13766