Fidelity of RNA Polymerase II Transcription Controlled by Elongation Factor TFIIS

Fidelity of DNA and protein synthesis is regulated by a proofreading mechanism but function of a similar mechanism during RNA synthesis has not been demonstrated. Analysis of transcriptional fidelity and its control has been hampered by the necessity to employ complex DNA templates requiring either...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 1996-11, Vol.93 (24), p.13677-13682
Hauptverfasser: Jeon, ChoonJu, Agarwal, Kan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Fidelity of DNA and protein synthesis is regulated by a proofreading mechanism but function of a similar mechanism during RNA synthesis has not been demonstrated. Analysis of transcriptional fidelity and its control has been hampered by the necessity to employ complex DNA templates requiring either a promoter and initiation factors or 3′-extended templates. To circumvent this difficulty, we have created an RNA-DNA dumbbell template that can be recognized as a template-primer and extended by RNA polymerase II. By employing this system, we demonstrate that RNA polymerase II can misincorporate a nucleotide and carry out template-dependent elongation at the mispaired end. The transcripts containing misincorporated residues can be cleaved by the very slow 3′→ 5′ribonuclease activity of the RNA polymerase II, but enhancement of this activity by the elongation factor TFIIS generates RNA with a high degree of fidelity. This enhanced preferential cleavage of misincorporated transcripts suggests an important role for TFIIS in maintaining transcriptional fidelity.
ISSN:0027-8424
1091-6490
DOI:10.1073/pnas.93.24.13677