Regulation of Mouse Gamete Interaction by a Sperm Tyrosine Kinase

A 95-kDa mouse sperm protein has been previously identified as a putative receptor involved in the sperm-egg interactions that lead to fertilization. The ligand for this receptor is the zona pellucida glycoprotein ZP3. This constituent of the oocyte-specific extracellular matrix mediates not only sp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 1992-12, Vol.89 (24), p.11692-11695
Hauptverfasser: Leyton, Lisette, LeGuen, Pascale, Bunch, Donna, Saling, Patricia M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A 95-kDa mouse sperm protein has been previously identified as a putative receptor involved in the sperm-egg interactions that lead to fertilization. The ligand for this receptor is the zona pellucida glycoprotein ZP3. This constituent of the oocyte-specific extracellular matrix mediates not only sperm binding to the zona but also triggers acrosomal exocytosis. The latter, also termed the acrosome reaction, is a key regulatory event upon which fertilization is absolutely dependent. Previously, we showed that the 95-kDa protein that binds ZP3 is a substrate for tyrosine kinase, and its phosphotyrosine content increases after sperm-zona pellucida binding. Here, we show the presence of protein tyrosine kinase activity in sperm plasma membranes and in electroeluted 95-kDa protein. The tyrosine kinase activity of the isolated protein is stimulated by solubilized zona pellucida and inhibited by tyrphostin RG-50864, a membrane-permeable tyrosine kinase inhibitor. Furthermore, tyrphostin inhibits zona-triggered acrosomal exocytosis in a dose-dependent manner. These findings indicate that the 95-kDa protein participates in a critical regulatory event of gamete interaction; moreover, our experiments suggest that sperm protein tyrosine kinase may be an excellent target for the control of fertility.
ISSN:0027-8424
1091-6490
DOI:10.1073/pnas.89.24.11692