Toward a cytogenetically based physical map of the wheat genome

Bread wheat (Triticum aestivum L. em Thell) is well suited for cytogenetic analysis because the genome, buffered by polyploidy, can tolerate structurally and numerically engineered chromosomes for analysis over infinite generations. This feature of polyploidy can be used in developing a high-resolut...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 1992-12, Vol.89 (23), p.11307-11311
Hauptverfasser: Werner, J.E. (University of California, Santa Barbara, CA), Endo, T.R, Gill, B.S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Bread wheat (Triticum aestivum L. em Thell) is well suited for cytogenetic analysis because the genome, buffered by polyploidy, can tolerate structurally and numerically engineered chromosomes for analysis over infinite generations. This feature of polyploidy can be used in developing a high-resolution, cytogenetically based physical map of the wheat genome. We show that numerous deletions, observed in the progeny of a monosomic addition of a chromosome from Triticum cylindricum in wheat, result from single breakpoints and a concomitant loss of distal fragments. Breakages occurred in euchromatic and heterochromatic regions. Forty-one deletions for chromosomes 7A, 7B, and 7D, and a set of genetically mapped DNA probes, were used to construct physical maps. Recombination was low in proximal chromosomal regions and very high toward the distal ends. Deletion mapping was more efficient than genetic mapping in resolving the order of proximal loci. Despite variation in size and arm ratio, relative gene position was largely conserved among chromosomes 7A, 7B, and 7D and a consensus group 7 physical map was constructed. Several molecularly tagged chromosome regions (MTCRs) of approximately one to a few million base pairs were identified that may be resolved by long-range mapping of DNA fragments. Thus, a cytogenetically based physical map may be used to integrate chromosome and DNA-based maps. The MTCRs may simplify strategies for cloning of agronomically useful genes despite the genetic complexity and the large genome size of wheat.
ISSN:0027-8424
1091-6490
DOI:10.1073/pnas.89.23.11307