Solution Conformations of the γ-Carboxyglutamic Acid Domain of Bovine Prothrombin Fragment 1, Residues 1-65

Molecular dynamics simulations have been performed (AMBER version 3.1) on solvated residues 1-65 of bovine prothrombin fragment 1 (BF1) by using the 2.8-Å resolution crystallographic coordinates as the starting conformation for understanding calcium ion-induced conformational changes that precede ex...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 1991-01, Vol.88 (2), p.424-428
Hauptverfasser: Charifson, Paul S., Darden, Tom, Tulinsky, Alexander, Hughey, Joseph L., Hiskey, Richard G., Pedersen, Lee G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Molecular dynamics simulations have been performed (AMBER version 3.1) on solvated residues 1-65 of bovine prothrombin fragment 1 (BF1) by using the 2.8-Å resolution crystallographic coordinates as the starting conformation for understanding calcium ion-induced conformational changes that precede experimentally observable phospholipid binding. Simulations were performed on the non-metal-bound crystal structure, the form resulting from addition of eight calcium ions to the 1-65 region of the crystal structure, the form resulting from removal of calcium ions after 107 ps and continuing the simulation, and an isolated hexapeptide loop (residues 18-23). In all cases, the 100-ps time scale seemed adequate to sample an ensemble of solution conformers within a particular region of conformation space. The non-metalcontaining BF1 did not unfold appreciably during a 106-ps simulation starting from the crystallographic geometry. The calcium ion-containing structure (Ca-BF1) underwent an interesting conformational reorganization during its evolution from the crystal structure: during the time course of a 107-ps simulation, Ca-BF1 experienced a trans → cis isomerization of the γ-carboxyglutamic acid-21 (Gla-21)-Pro-22 peptide bond. Removal of the calcium ions from this structure followed by 114 ps of additional molecular dynamics showed significant unfolding relative to the final 20-ps average structure of the 107-ps simulation; however, the Gla-21-Pro-22 peptide bond remained cis. A 265-ps simulation on the termini-protected hexapeptide loop (Cys-18 to Cys-23) containing two calcium ions also did not undergo a trans → cis isomerization. It is believed that the necessary activation energy for the transitional event observed in the Ca-BF1 simulation was largely supplied by global conformational events with a possible assist from relief of intermolecular crystal packing forces. The presence of a Gla preceding Pro-22, the inclusion of Pro-22 in a highly strained loop structure, and the formation of two long-lived salt bridges prior to isomerization may all contribute to this finding.
ISSN:0027-8424
1091-6490
DOI:10.1073/pnas.88.2.424