Simultaneous Visualization of Chromosome Bands and Hybridization Signal Using Colloidal-Gold Labeling in Electron Microscopy

Electron microscopy (EM) is seldom used with in situ hybridization to localize DNA sequences because banding methods for chromosome identification could not be coupled to EM techniques. We have applied an immunochemical replication-banding method specific for EM to solve this problem. A thymidine sy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 1991-12, Vol.88 (23), p.10916-10920
Hauptverfasser: Fetni, Raouf, Drouin, Regen, Lemieux, Nicole, Messier, Paul-Emil, Richer, Claude-Lise
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Electron microscopy (EM) is seldom used with in situ hybridization to localize DNA sequences because banding methods for chromosome identification could not be coupled to EM techniques. We have applied an immunochemical replication-banding method specific for EM to solve this problem. A thymidine synchronization/BrdUrd release protocol allows BrdUrd incorporation only into late replicating bands. A biotinylated DNA probe is hybridized in situ to its complementary sequence. The biotinylated probe and the BrdUrd-substituted DNA are simultaneously localized by different reporter/detection systems using different-sized colloidal gold particles as electron-dense tags. We demonstrate the high precision of this mapping procedure by localizing on long prophase chromosomes (>1000 bands per haploid set) the pXBR-1 sequence to a small subregion of the centromeric subband Xp11.1-Xq11.1. This localization to a part of an individual prophase subband is the most precise localization ever reported on human banded mitotic chromosomes.
ISSN:0027-8424
1091-6490
DOI:10.1073/pnas.88.23.10916