Quantitative Assay for Morphogenesis Indicates the Role of Extracellular Matrix Components and G Proteins

A quantitative assay for morphogenesis is described that involves counting the organizing centers (swirling patterns) formed by many cultured fibroblasts. Organizing centers, which are found in vivo, represent one of the smallest units of morphogenesis. We show that macroscopically visible organizin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 1991-11, Vol.88 (21), p.9588-9592
Hauptverfasser: Klebe, Robert J., Overfelt, Theodora M., Magnuson, Victoria L., Steffensen, Bjorn, Chen, Dali, Zardeneta, Gustavo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A quantitative assay for morphogenesis is described that involves counting the organizing centers (swirling patterns) formed by many cultured fibroblasts. Organizing centers, which are found in vivo, represent one of the smallest units of morphogenesis. We show that macroscopically visible organizing centers form by the merger of smaller organizing centers. Parallel orientation of cells on plastic substrata requires cell-cell contact, but organizing centers can develop without cell-cell contact on collagen gels. On collagen gels, the orientation of collagen fibers determines the orientation of cells with respect to one another. Although organizing centers resemble fingerprints, we have shown that a stochastic process determines the spatial orientation of organizing centers. Treatment of transformed cell lines with agents that increase cAMP levels or alter the activity of guanine nucleotide binding proteins resulted in the generation of organizing centers. Cholesterol precursors involved in protein isoprenylation were found to be potent reverse-transformation agents that could alter the two-dimensional morphogenesis of cells. The simple assay described should permit the analysis of morphogenesis at the molecular and cellular levels.
ISSN:0027-8424
1091-6490
DOI:10.1073/pnas.88.21.9588