The mtr Locus is a Two-Gene Operon Required for Transcription Attenuation in the trp Operon of Bacillus subtilis

We have cloned and characterized the mtr operon of Bacillus subtilis. This operon encodes a presumed RNA-binding regulatory protein that is required for attenuation control of the trp operon. We have shown that the mtr operon consists of two structural genes, mtrA and mtrB, predicted to encode 22-kD...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 1990-11, Vol.87 (22), p.8726-8730
Hauptverfasser: Gollnick, Paul, Ishino, Shuichi, Kuroda, Mitzi I., Henner, Dennis J., Yanofsky, Charles
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We have cloned and characterized the mtr operon of Bacillus subtilis. This operon encodes a presumed RNA-binding regulatory protein that is required for attenuation control of the trp operon. We have shown that the mtr operon consists of two structural genes, mtrA and mtrB, predicted to encode 22-kDa and 8-kDa polypeptides, respectively. MtrB shows homology with RegA, and RNA-binding regulatory protein of bacteriophage T4. The lesions in several mtr mutants were localized to mtrB or the putative mtr promoter. Several mtrB alleles were dominant to mtr+, suggesting that the regulatory factor is a multimeric protein. The in vivo action of the mtrA and mtrB gene products was analyzed in an E. coli strain containing a trpE-lacZ gene fusion under control of the B. subtilis trp promoter/attenuator region. Both MtrA and MtrB were necessary for regulation of β-galactosidase production.
ISSN:0027-8424
1091-6490
DOI:10.1073/pnas.87.22.8726