Long-Term Culture and Fine Specificity of Human Cytotoxic T-Lymphocyte Clones Reactive with Human Immunodeficiency Virus Type 1

The definition of human immunodeficiency virus type 1 (HIV-1) immunogenic epitopes is central to the rational design of AIDS vaccine strategies. In this study, we have generated seven HIV-1 reverse transcriptase-specific cytotoxic T-lymphocyte (CTL) clones from the peripheral blood of two seropositi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 1989-12, Vol.86 (23), p.9514-9518
Hauptverfasser: Walker, Bruce D., Flexner, Charles, Birch-Limberger, Karen, Fisher, Laura, Paradis, Timothy J., Aldovini, Anna, Young, Richard, Moss, Bernard, Schooley, Robert T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The definition of human immunodeficiency virus type 1 (HIV-1) immunogenic epitopes is central to the rational design of AIDS vaccine strategies. In this study, we have generated seven HIV-1 reverse transcriptase-specific cytotoxic T-lymphocyte (CTL) clones from the peripheral blood of two seropositive subjects. Epitopes recognized by these CTL clones were identified by using target cells infected with recombinant HIV-1-vaccinia virus vectors expressing truncated reverse transcriptase proteins and further defined by using target cells incubated with overlapping 25-amino acid synthetic reverse transcriptase peptides. Five different CTL epitopes were identified, and in each case recognition was restricted by class I human leukocyte antigens (HLA). Clones maintained specific cytolytic function in continuous culture for up to 11 months, requiring only periodic restimulation with a CD3-specific monoclonal antibody. These results indicate that HIV-1-specific, major histocompatibility class I-restricted CTL recognize multiple epitopes of a single viral gene product in conjunction with different host HLA antigens. In addition, they demonstrate that human virus-specific CTL can be grown in long-term culture without the need for reexposure to viral antigen.
ISSN:0027-8424
1091-6490
DOI:10.1073/pnas.86.23.9514