Transfection and Homologous Recombination Involving Single-Stranded DNA Substrates in Mammalian Cells and Nuclear Extracts
We have examined the ability of single-stranded DNA to participate in homologous recombination reactions in mammalian cells and nuclear extracts derived from them. We have inserted a fragment of the neo gene into the single-stranded DNA phage vector M13 mp11. The neo fragment was derived from a dele...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 1986-08, Vol.83 (15), p.5587-5591 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We have examined the ability of single-stranded DNA to participate in homologous recombination reactions in mammalian cells and nuclear extracts derived from them. We have inserted a fragment of the neo gene into the single-stranded DNA phage vector M13 mp11. The neo fragment was derived from a deletion derivative of the prokaryotic-eukaryotic shuttle vector pSV2neo. The resulting single-stranded DNA was mixed with a double-stranded deletion derivative of pSV2neo and tested for recombination in human cells, monkey cells, and nuclear extracts obtained from human cells. We were able to obtain recombinant molecules containing wild-type neo genes in all three systems. Examination of the products of recombination indicated that they resulted from correction of the deletion in the double-stranded DNA substrate. We were unable to detect any extensive conversion of single-stranded DNA into its double-stranded counterpart before it participated in the recombination reaction. We have also tested the ability of single-stranded DNA to yield transfectants. When a single-stranded DNA derivative of the herpes simplex virus thymidine kinase (TK) gene was introduced into mouse L-M(TK-) cells, we were able to obtain TK+ colonies. From these results, we conclude that single-stranded DNA can participate in transfection as well as homologous recombination reactions in mammalian cells. |
---|---|
ISSN: | 0027-8424 1091-6490 |
DOI: | 10.1073/pnas.83.15.5587 |