Representations of Weak and Strong Integrals in Banach Spaces
We establish a representation of the Gelfand-Pettis (weak) integral in terms of unconditionally convergent series. Moreover, absolute convergence of the series is a necessary and sufficient condition in order that the weak integral coincide with the Bochner integral. Two applications of the represen...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 1969-06, Vol.63 (2), p.266-270 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We establish a representation of the Gelfand-Pettis (weak) integral in terms of unconditionally convergent series. Moreover, absolute convergence of the series is a necessary and sufficient condition in order that the weak integral coincide with the Bochner integral. Two applications of the representation are given. The first is a simplified proof of the countable additivity and absolute continuity of the indefinite weak integral. The second application is to probability theory; we characterize the conditional expectation of a weakly integrable function. |
---|---|
ISSN: | 0027-8424 1091-6490 |
DOI: | 10.1073/pnas.63.2.266 |