Representations of Weak and Strong Integrals in Banach Spaces

We establish a representation of the Gelfand-Pettis (weak) integral in terms of unconditionally convergent series. Moreover, absolute convergence of the series is a necessary and sufficient condition in order that the weak integral coincide with the Bochner integral. Two applications of the represen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 1969-06, Vol.63 (2), p.266-270
1. Verfasser: Brooks, James K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We establish a representation of the Gelfand-Pettis (weak) integral in terms of unconditionally convergent series. Moreover, absolute convergence of the series is a necessary and sufficient condition in order that the weak integral coincide with the Bochner integral. Two applications of the representation are given. The first is a simplified proof of the countable additivity and absolute continuity of the indefinite weak integral. The second application is to probability theory; we characterize the conditional expectation of a weakly integrable function.
ISSN:0027-8424
1091-6490
DOI:10.1073/pnas.63.2.266