Attenuation of human respiratory syncytial virus by genome-scale codon-pair deoptimization
Significance Human respiratory syncytial virus (RSV) is the most important viral agent of serious pediatric respiratory-tract disease. We designed new live attenuated RSV vaccine candidates by codon-pair deoptimization (CPD). Specifically, viral ORFs were recoded to increase the usage of underrepres...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2014-09, Vol.111 (36), p.13169-13174 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Significance Human respiratory syncytial virus (RSV) is the most important viral agent of serious pediatric respiratory-tract disease. We designed new live attenuated RSV vaccine candidates by codon-pair deoptimization (CPD). Specifically, viral ORFs were recoded to increase the usage of underrepresented codon pairs, leaving amino acid coding unchanged. CPD viruses were temperature-sensitive and grew less efficiently in vitro than wild-type RSV. In addition, the CPD viruses exhibited a range of restriction in mice and African green monkeys that compared favorably with existing attenuated strains presently in clinical studies. This study produced examples of a new type of vaccine candidate for RSV and showed that CPD of a nonsegmented negative-strand RNA virus can rapidly generate vaccine candidates with a range of attenuation. |
---|---|
ISSN: | 0027-8424 1091-6490 |
DOI: | 10.1073/pnas.1411290111 |