Assessing the role of cladogenesis in macroevolution by integrating fossil and molecular evidence

Assessing the extent to which population subdivision during cladogenesis is necessary for long-term phenotypic evolution is of fundamental importance in a broad range of biological disciplines. Differentiating cladogenesis from anagenesis, defined as evolution within a species, has generally been ha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2013-02, Vol.110 (8), p.2904-2909
Hauptverfasser: Strotz, Luke C., Allen, Andrew P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Assessing the extent to which population subdivision during cladogenesis is necessary for long-term phenotypic evolution is of fundamental importance in a broad range of biological disciplines. Differentiating cladogenesis from anagenesis, defined as evolution within a species, has generally been hampered by dating precision, insufficient fossil data, and difficulties in establishing a direct link between morphological changes detectable in the fossil record and biological species. Here we quantify the relative frequencies of cladogenesis and anagenesis for macroperforate planktic Foraminifera, which arguably have the most complete fossil record currently available, to address this question. Analyzing this record in light of molecular evidence, while taking into account the precision of fossil dating techniques, we estimate that the fraction of speciation events attributable to anagenesis is
ISSN:0027-8424
1091-6490
DOI:10.1073/pnas.1208302110