Gate-tunable carbon nanotube–MoS₂ heterojunction p-n diode

The p-n junction diode and field-effect transistor are the two most ubiquitous building blocks of modern electronics and optoelectronics. In recent years, the emergence of reduced dimensionality materials has suggested that these components can be scaled down to atomic thicknesses. Although high-per...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2013-11, Vol.110 (45), p.18076-18080
Hauptverfasser: Jariwala, Deep, Sangwan, Vinod K, Wu, Chung-Chiang, Prabhumirashi, Pradyumna L, Geier, Michael L, Marks, Tobin J, Lauhon, Lincoln J, Hersam, Mark C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The p-n junction diode and field-effect transistor are the two most ubiquitous building blocks of modern electronics and optoelectronics. In recent years, the emergence of reduced dimensionality materials has suggested that these components can be scaled down to atomic thicknesses. Although high-performance field-effect devices have been achieved from monolayered materials and their heterostructures, a p-n heterojunction diode derived from ultrathin materials is notably absent and constrains the fabrication of complex electronic and optoelectronic circuits. Here we demonstrate a gate-tunable p-n heterojunction diode using semiconducting single-walled carbon nanotubes (SWCNTs) and single-layer molybdenum disulfide as p-type and n-type semiconductors, respectively. The vertical stacking of these two direct band gap semiconductors forms a heterojunction with electrical characteristics that can be tuned with an applied gate bias to achieve a wide range of charge transport behavior ranging from insulating to rectifying with forward-to-reverse bias current ratios exceeding 10 ⁴. This heterojunction diode also responds strongly to optical irradiation with an external quantum efficiency of 25% and fast photoresponse
ISSN:0027-8424
1091-6490
DOI:10.1073/pnas.1317226110