Unimodal sequences and quantum and mock modular forms

We show that the rank generating function U (t ; q) for strongly unimodal sequences lies at the interface of quantum modular forms and mock modular forms. We use U (-1; q) to obtain a quantum modular form which is “dual” to the quantum form Zagier constructed from Kontsevich’s “strange” function F (...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2012-10, Vol.109 (40), p.16063-16067
Hauptverfasser: Bryson, Jennifer, Ono, Ken, Pitman, Sarah, Rhoades, Robert C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 16067
container_issue 40
container_start_page 16063
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 109
creator Bryson, Jennifer
Ono, Ken
Pitman, Sarah
Rhoades, Robert C
description We show that the rank generating function U (t ; q) for strongly unimodal sequences lies at the interface of quantum modular forms and mock modular forms. We use U (-1; q) to obtain a quantum modular form which is “dual” to the quantum form Zagier constructed from Kontsevich’s “strange” function F (q). As a result, we obtain a new representation for a certain generating function for L -values. The series U (i ; q) = U (- i ; q) is a mock modular form, and we use this fact to obtain new congruences for certain enumerative functions.
doi_str_mv 10.1073/pnas.1211964109
format Article
fullrecord <record><control><sourceid>jstor_pnas_</sourceid><recordid>TN_cdi_pnas_primary_109_40_16063</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>41763202</jstor_id><sourcerecordid>41763202</sourcerecordid><originalsourceid>FETCH-LOGICAL-c507t-830332930bcb61d69c94b8b4c518dcd0b8b4be669edd90c6fac6315914c4a3413</originalsourceid><addsrcrecordid>eNpVUEtLxDAQDqLgunr2JPbopetMk6bNRRDxBYIH3XNIk1SrbbMmreC_N7WL4mVm4HsxHyHHCCuEgp5vehVWmCEKzhDEDlnEiSlnAnbJAiAr0pJlbJ8chPAGACIvYUHydd90zqg2CfZjtL22IVG9ST5G1Q9j93N3Tr_HYcZW-aR2vguHZK9WbbBH270k65vr56u79OHx9v7q8iHVORRDWlKgNBMUKl1xNFxowaqyYjrH0mgD011ZzoU1RoDmtdKcYi6QaaYoQ7okF7PvZqw6a7TtB69aufFNp_yXdKqR_5G-eZUv7lNSVoic02hwtjXwLr4XBtk1Qdu2Vb11Y5BYAkWWsyKL1POZqr0Lwdv6NwZBTg3LqWH513BUJFvzCfhjC8migsNP_slMeQuD878chgWnGUyhpzNeKyfVi2-CXD9lEMWAmShzSr8B9wiM3A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1803145472</pqid></control><display><type>article</type><title>Unimodal sequences and quantum and mock modular forms</title><source>Jstor Complete Legacy</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Bryson, Jennifer ; Ono, Ken ; Pitman, Sarah ; Rhoades, Robert C</creator><creatorcontrib>Bryson, Jennifer ; Ono, Ken ; Pitman, Sarah ; Rhoades, Robert C</creatorcontrib><description>We show that the rank generating function U (t ; q) for strongly unimodal sequences lies at the interface of quantum modular forms and mock modular forms. We use U (-1; q) to obtain a quantum modular form which is “dual” to the quantum form Zagier constructed from Kontsevich’s “strange” function F (q). As a result, we obtain a new representation for a certain generating function for L -values. The series U (i ; q) = U (- i ; q) is a mock modular form, and we use this fact to obtain new congruences for certain enumerative functions.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1211964109</identifier><language>eng</language><publisher>National Academy of Sciences</publisher><subject>College mathematics ; equations ; functional response models ; Generating function ; Integers ; Mathematical congruence ; Mathematical cusps ; Mathematical functions ; Mathematical sequences ; Mathematical theorems ; Physical Sciences ; Series convergence ; statistical analysis</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2012-10, Vol.109 (40), p.16063-16067</ispartof><rights>copyright © 1993-2008 National Academy of Sciences of the United States of America</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c507t-830332930bcb61d69c94b8b4c518dcd0b8b4be669edd90c6fac6315914c4a3413</citedby><cites>FETCH-LOGICAL-c507t-830332930bcb61d69c94b8b4c518dcd0b8b4be669edd90c6fac6315914c4a3413</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/109/40.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/41763202$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/41763202$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27903,27904,53769,53771,57995,58228</link.rule.ids></links><search><creatorcontrib>Bryson, Jennifer</creatorcontrib><creatorcontrib>Ono, Ken</creatorcontrib><creatorcontrib>Pitman, Sarah</creatorcontrib><creatorcontrib>Rhoades, Robert C</creatorcontrib><title>Unimodal sequences and quantum and mock modular forms</title><title>Proceedings of the National Academy of Sciences - PNAS</title><description>We show that the rank generating function U (t ; q) for strongly unimodal sequences lies at the interface of quantum modular forms and mock modular forms. We use U (-1; q) to obtain a quantum modular form which is “dual” to the quantum form Zagier constructed from Kontsevich’s “strange” function F (q). As a result, we obtain a new representation for a certain generating function for L -values. The series U (i ; q) = U (- i ; q) is a mock modular form, and we use this fact to obtain new congruences for certain enumerative functions.</description><subject>College mathematics</subject><subject>equations</subject><subject>functional response models</subject><subject>Generating function</subject><subject>Integers</subject><subject>Mathematical congruence</subject><subject>Mathematical cusps</subject><subject>Mathematical functions</subject><subject>Mathematical sequences</subject><subject>Mathematical theorems</subject><subject>Physical Sciences</subject><subject>Series convergence</subject><subject>statistical analysis</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNpVUEtLxDAQDqLgunr2JPbopetMk6bNRRDxBYIH3XNIk1SrbbMmreC_N7WL4mVm4HsxHyHHCCuEgp5vehVWmCEKzhDEDlnEiSlnAnbJAiAr0pJlbJ8chPAGACIvYUHydd90zqg2CfZjtL22IVG9ST5G1Q9j93N3Tr_HYcZW-aR2vguHZK9WbbBH270k65vr56u79OHx9v7q8iHVORRDWlKgNBMUKl1xNFxowaqyYjrH0mgD011ZzoU1RoDmtdKcYi6QaaYoQ7okF7PvZqw6a7TtB69aufFNp_yXdKqR_5G-eZUv7lNSVoic02hwtjXwLr4XBtk1Qdu2Vb11Y5BYAkWWsyKL1POZqr0Lwdv6NwZBTg3LqWH513BUJFvzCfhjC8migsNP_slMeQuD878chgWnGUyhpzNeKyfVi2-CXD9lEMWAmShzSr8B9wiM3A</recordid><startdate>20121002</startdate><enddate>20121002</enddate><creator>Bryson, Jennifer</creator><creator>Ono, Ken</creator><creator>Pitman, Sarah</creator><creator>Rhoades, Robert C</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20121002</creationdate><title>Unimodal sequences and quantum and mock modular forms</title><author>Bryson, Jennifer ; Ono, Ken ; Pitman, Sarah ; Rhoades, Robert C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c507t-830332930bcb61d69c94b8b4c518dcd0b8b4be669edd90c6fac6315914c4a3413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>College mathematics</topic><topic>equations</topic><topic>functional response models</topic><topic>Generating function</topic><topic>Integers</topic><topic>Mathematical congruence</topic><topic>Mathematical cusps</topic><topic>Mathematical functions</topic><topic>Mathematical sequences</topic><topic>Mathematical theorems</topic><topic>Physical Sciences</topic><topic>Series convergence</topic><topic>statistical analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bryson, Jennifer</creatorcontrib><creatorcontrib>Ono, Ken</creatorcontrib><creatorcontrib>Pitman, Sarah</creatorcontrib><creatorcontrib>Rhoades, Robert C</creatorcontrib><collection>AGRIS</collection><collection>CrossRef</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bryson, Jennifer</au><au>Ono, Ken</au><au>Pitman, Sarah</au><au>Rhoades, Robert C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unimodal sequences and quantum and mock modular forms</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><date>2012-10-02</date><risdate>2012</risdate><volume>109</volume><issue>40</issue><spage>16063</spage><epage>16067</epage><pages>16063-16067</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>We show that the rank generating function U (t ; q) for strongly unimodal sequences lies at the interface of quantum modular forms and mock modular forms. We use U (-1; q) to obtain a quantum modular form which is “dual” to the quantum form Zagier constructed from Kontsevich’s “strange” function F (q). As a result, we obtain a new representation for a certain generating function for L -values. The series U (i ; q) = U (- i ; q) is a mock modular form, and we use this fact to obtain new congruences for certain enumerative functions.</abstract><pub>National Academy of Sciences</pub><doi>10.1073/pnas.1211964109</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2012-10, Vol.109 (40), p.16063-16067
issn 0027-8424
1091-6490
language eng
recordid cdi_pnas_primary_109_40_16063
source Jstor Complete Legacy; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects College mathematics
equations
functional response models
Generating function
Integers
Mathematical congruence
Mathematical cusps
Mathematical functions
Mathematical sequences
Mathematical theorems
Physical Sciences
Series convergence
statistical analysis
title Unimodal sequences and quantum and mock modular forms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T07%3A00%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pnas_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unimodal%20sequences%20and%20quantum%20and%20mock%20modular%20forms&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Bryson,%20Jennifer&rft.date=2012-10-02&rft.volume=109&rft.issue=40&rft.spage=16063&rft.epage=16067&rft.pages=16063-16067&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1211964109&rft_dat=%3Cjstor_pnas_%3E41763202%3C/jstor_pnas_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1803145472&rft_id=info:pmid/&rft_jstor_id=41763202&rfr_iscdi=true