Unimodal sequences and quantum and mock modular forms

We show that the rank generating function U (t ; q) for strongly unimodal sequences lies at the interface of quantum modular forms and mock modular forms. We use U (-1; q) to obtain a quantum modular form which is “dual” to the quantum form Zagier constructed from Kontsevich’s “strange” function F (...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2012-10, Vol.109 (40), p.16063-16067
Hauptverfasser: Bryson, Jennifer, Ono, Ken, Pitman, Sarah, Rhoades, Robert C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We show that the rank generating function U (t ; q) for strongly unimodal sequences lies at the interface of quantum modular forms and mock modular forms. We use U (-1; q) to obtain a quantum modular form which is “dual” to the quantum form Zagier constructed from Kontsevich’s “strange” function F (q). As a result, we obtain a new representation for a certain generating function for L -values. The series U (i ; q) = U (- i ; q) is a mock modular form, and we use this fact to obtain new congruences for certain enumerative functions.
ISSN:0027-8424
1091-6490
DOI:10.1073/pnas.1211964109