Unimodal sequences and quantum and mock modular forms
We show that the rank generating function U (t ; q) for strongly unimodal sequences lies at the interface of quantum modular forms and mock modular forms. We use U (-1; q) to obtain a quantum modular form which is “dual” to the quantum form Zagier constructed from Kontsevich’s “strange” function F (...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2012-10, Vol.109 (40), p.16063-16067 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We show that the rank generating function U (t ; q) for strongly unimodal sequences lies at the interface of quantum modular forms and mock modular forms. We use U (-1; q) to obtain a quantum modular form which is “dual” to the quantum form Zagier constructed from Kontsevich’s “strange” function F (q). As a result, we obtain a new representation for a certain generating function for L -values. The series U (i ; q) = U (- i ; q) is a mock modular form, and we use this fact to obtain new congruences for certain enumerative functions. |
---|---|
ISSN: | 0027-8424 1091-6490 |
DOI: | 10.1073/pnas.1211964109 |