IL-1 antagonism reduces hyperglycemia and tissue inflammation in the type 2 diabetic GK rat
Recent studies suggest an inflammatory process, characterized by local cytokine/chemokine production and immune cell infiltration, regulates islet dysfunction and insulin resistance in type 2 diabetes. However, the factor initiating this inflammatory response is not known. Here, we characterized tis...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2009-08, Vol.106 (33), p.13998-14003 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Recent studies suggest an inflammatory process, characterized by local cytokine/chemokine production and immune cell infiltration, regulates islet dysfunction and insulin resistance in type 2 diabetes. However, the factor initiating this inflammatory response is not known. Here, we characterized tissue inflammation in the type 2 diabetic GK rat with a focus on the pancreatic islet and investigated a role for IL-1. GK rat islets, previously characterized by increased macrophage infiltration, displayed increased expression of several inflammatory markers including IL-1β. In the periphery, increased expression of IL-1β was observed primarily in the liver. Specific blockade of IL-1 activity by the IL-1 receptor antagonist (IL-1Ra) reduced the release of inflammatory cytokines/chemokines from GK islets in vitro and from mouse islets exposed to metabolic stress. Islets from mice deficient in IL-1β or MyD88 challenged with glucose and palmitate in vitro also produced significantly less IL-6 and chemokines. In vivo, treatment of GK rats with IL-1Ra decreased hyperglycemia, reduced the proinsulin/insulin ratio, and improved insulin sensitivity. In addition, islet-derived proinflammatory cytokines/chemokines (IL-1β, IL-6, TNFα, KC, MCP-1, and MIP-1α) and islet CD68⁺, MHC II⁺, and CD53⁺ immune cell infiltration were reduced by IL-1Ra treatment. Treated GK rats also exhibited fewer markers of inflammation in the liver. We conclude that elevated islet IL-1β activity in the GK rat promotes cytokine and chemokine expression, leading to the recruitment of innate immune cells. Rather than being directly cytotoxic, IL-1β may drive tissue inflammation that impacts on both β cell functional mass and insulin sensitivity in type 2 diabetes. |
---|---|
ISSN: | 0027-8424 1091-6490 |
DOI: | 10.1073/pnas.0810087106 |