Structural arrangement of the transmission interface in the antigen ABC transport complex TAP
The transporter associated with antigen processing (TAP) represents a focal point in the immune recognition of virally or malignantly transformed cells by translocating proteasomal degradation products into the endoplasmic reticulum-lumen for loading of MHC class I molecules. Based on a number of ex...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2009-04, Vol.106 (14), p.5551-5556 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The transporter associated with antigen processing (TAP) represents a focal point in the immune recognition of virally or malignantly transformed cells by translocating proteasomal degradation products into the endoplasmic reticulum-lumen for loading of MHC class I molecules. Based on a number of experimental data and the homology to the bacterial ABC exporter Sav1866, we constructed a 3D structural model of the core TAP complex and used it to examine the interface between the transmembrane and nucleotide-binding domains (NBD) by cysteine-scanning and cross-linking approaches. Herein, we demonstrate the functional importance of the newly identified X-loop in the NBD in coupling substrate binding to downstream events in the transport cycle. We further verified domain swapping in a heterodimeric ABC half-transporter complex by cysteine cross-linking. Strikingly, either substrate binding or translocation can be blocked by cross-linking the X-loop to coupling helix 2 or 1, respectively. These results resolve the structural arrangement of the transmission interface and point to different functions of the cytosolic loops and coupling helices in substrate binding, signaling, and transport. |
---|---|
ISSN: | 0027-8424 1091-6490 |
DOI: | 10.1073/pnas.0811260106 |