Down-Regulation of 14-3-3ζ Suppresses Anchorage-Independent Growth of Lung Cancer Cells through Anoikis Activation

The family of 14-3-3 proteins has emerged as critical regulators of diverse cellular responses under both physiological and pathological conditions. Here, we report an important role of 14-3-3ζ in tumorigenesis through a mechanism that involves anoikis resistance. 14-3-3ζ is up-regulated in a number...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2008-01, Vol.105 (1), p.162-167
Hauptverfasser: Li, Zenggang, Zhao, Jing, Du, Yuhong, Park, Hae Ryoun, Sun, Shi-Yong, Bernal-Mizrachi, Leon, Aitken, Alastair, Khuri, Fadlo R., Fu, Haian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The family of 14-3-3 proteins has emerged as critical regulators of diverse cellular responses under both physiological and pathological conditions. Here, we report an important role of 14-3-3ζ in tumorigenesis through a mechanism that involves anoikis resistance. 14-3-3ζ is up-regulated in a number of cancer types, including lung cancer. Through an RNAi approach using human lung adenocarcinoma-derived A549 cells as a model system, we have found that knockdown of a single ζ isoform of 14-3-3 is sufficient to restore the sensitivity of cancer cells to anoikis and impair their anchorage-independent growth. Enhanced anoikis appears to be mediated in part by up-regulated BH3-only proteins, Bad and Bim, coupled with decreased Mcl-1, resulting in the subsequent activation of Bax. This study suggests a model in which anchorage-independent growth of lung cancer cells requires the presence of 14-3-3ζ. This work not only reveals a critical role of 14-3-3ζ in anoikis suppression in lung cancer cells, but also identifies and validates 14-3-3ζ as a potential molecular target for anticancer therapeutic development.
ISSN:0027-8424
1091-6490
DOI:10.1073/pnas.0710905105