Interrogating Multiple Aspects of Variation in a Full Resequencing Data Set to Infer Human Population Size Changes

We present an expanded data set of 50 unlinked autosomal noncoding regions, resequenced in samples of Hausa from Cameroon, Italians, and Chinese. We use these data to make inferences about human demographic history by using a technique that combines multiple aspects of genetic data, including levels...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2005-12, Vol.102 (51), p.18508-18513
Hauptverfasser: Benjamin F. Voight, Alison M. Adams, Linda A. Frisse, Qian, Yudong, Hudson, Richard R., Di Rienzo, Anna, Hartl, Daniel L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present an expanded data set of 50 unlinked autosomal noncoding regions, resequenced in samples of Hausa from Cameroon, Italians, and Chinese. We use these data to make inferences about human demographic history by using a technique that combines multiple aspects of genetic data, including levels of polymorphism, the allele frequency spectrum, and linkage disequilibrium. We explore an extensive range of demographic parameters and demonstrate that our method of combining multiple aspects of the data results in a significant reduction of the compatible parameter space. In agreement with previous reports, we find that the Hausa data are compatible with demographic equilibrium as well as a set of recent population expansion models. In contrast to the Hausa, when multiple aspects of the data are considered jointly, the non-Africans depart from an equilibrium model of constant population size and are compatible with a range of simple bottleneck models, including a 50-90% reduction in effective population size occurring some time after the appearance of modern humans in Africa 160,000-120,000 years ago.
ISSN:0027-8424
1091-6490
DOI:10.1073/pnas.0507325102