Molecular Genetic Analysis of the Glycosyltransferase Fringe in Drosophila

Fringe proteins are β1,3-N-acetylglucosaminyltransferases that modulate signaling through Notch receptors by modifying O-linked fucose on epidermal growth factor domains. Fringe is highly conserved, and comparison among 18 different Fringe proteins from 11 different species identifies a core set of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2003-05, Vol.100 (11), p.6404-6409
Hauptverfasser: Correia, Trudy, Papayannopoulos, Venizelos, Panin, Vladislav, Woronoff, Pamela, Jiang, Jin, Vogt, Thomas F., Irvine, Kenneth D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Fringe proteins are β1,3-N-acetylglucosaminyltransferases that modulate signaling through Notch receptors by modifying O-linked fucose on epidermal growth factor domains. Fringe is highly conserved, and comparison among 18 different Fringe proteins from 11 different species identifies a core set of 84 amino acids that are identical among all Fringes. Fringe is only distantly related to other glycosyltransferases, but analysis of the predicted Drosophila proteome identifies a set of four sequence motifs shared among Fringe and other putative β1,3-glycosyltransferases. To gain functional insight into these conserved sequences, we genetically and molecularly characterized 14 point mutations in Drosophila fringe. Most nonsense mutations act as recessive antimorphs, raising the possibility that Fringe may function as a dimer. Missense mutations identify two distinct motifs that are conserved among β1,3-glycosyltransferases, and that can be modeled onto key motifs in the crystallographic structures of bovine β1,4-galactosyltransferase 1 and human glucuronyltransferase I. Other missense mutations map to amino acids that are conserved among Fringe proteins, but not among other glycosyltransferases, and thus may identify structural motifs that are required for unique aspects of Fringe activity.
ISSN:0027-8424
1091-6490
DOI:10.1073/pnas.1131007100